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Preface 

This book covers the principles and challenges involved in the design and 
analysis of control systems. A control system is an interconnection of in-
teracting components forming a configuration that will provide a desired 
system response. Feedback is a part of the control system and consists of 
the process of measuring the controlled variable and using that informa-
tion to influence the controlled variable. The material presented in this 
book is of practical interest because it provides insight into the fundamen-
tal nature of control systems and enables the reader to engineer effective 
controllers. The motivation of the book is to imbue the reader with skills 
to design and analyze implementable control algorithms for a wide range 
of real engineering applications. 

The book is divided into nine chapters that can be grouped into three 
parts. The first part of the book (Chapters 1, 2, and 3) introduces the prin-
ciples involved in control systems, discusses various applications, develops 
mathematical models for dynamic systems, and shows how the models are 
used to obtain and study the system response (behavior). This material 
is useful in a Dynamic Systems II class, which serves as a basis for a first 
course in Control Systems, whose material is covered in the second part 
of the book (Chapters 4, 5, and 6). This part of the book covers the 
basic characteristics of control systems, root locus design methods, and 
frequency-response design methods. The last part of the book (Chapters 
7, 8, and 9) deals with subjects suitable for an Advanced Control Systems 
class: state space design methods, digital control systems, state and infor-
mation space estimation, and nonlinear control systems. 

The three integrated and overlapping classes that can be taught and 
studied using this book are suitable for both undergraduate and graduate 
students with no background in control systems. Control system practice 
cuts across aerospace, chemical, electrical, industrial, and mechanical en-
gineering, therefore this text is useful in all these fields. Although written 
ostensibly as a classroom textbook, the book can also serve as an indis-
pensable tool for self-study and reference for engineering professionals. 
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Key Features of the Book 

• Covers the theoretical and practical principles involved in the design 
and analysis of control systems applicable to a broad spectrum of 
engineering disciplines. 

• Develops mathematical models for different types of dynamic sys-
tems such as mechanical, electrical, electromechanical, mechatronic, 
thermal-fluid, chemical, hydraulic, and pneumatic systems. 

• Illustrates how system models are used to study the system response 
(behavior), and how the models are employed to achieve system 

control. 

• Presents standard control systems material in a systematic and easy-
to-follow fashion. 

• Introduces and develops advanced control systems concepts on a well 
established foundation of standard control system principles. 

• Employs "just-in-time ·learning" where concepts are introduced and 
developed as they become relevant. This fosters a better understand-
ing of the concepts and their engineering applications. 

• Uses many worked examples, design problems, and a wide range of 
illustrative applications from aerospace, robotics, mechatronics, and 
manufacturing. 

• Makes extensive use of MATLAB to clearly demonstrate control sys-
tem concepts and their implementation. 

• Includes descriptions of a number of new demonstrative modern con-
trol systems laboratory experiments such as Magnetic Levitation, the 
Inverted Pendulum, the 3-DOF Helicopter, the 2-DOF Robot, and the 
Pendubot. 
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Key Benefits for the User 

• One textbook usable for three different but overlapping courses: Dy-
namic Systems II, A First Course in Control Systems, and Advanced 
Control Systems. It offers a more economical option than using three 
different textbooks. 

• A textbook that emphasizes and embraces the multidisciplinary na-
ture of control system engineering and employs "justJin-time learning 
and teaching." The user follows and learns the material better than 
from a conventional control system text. 

• All the relevant principles and concepts (standard and advanced) in-
volved in the control of dynamic systems are covered in one textbook. 

• Detailed descriptions of a range of new control systems laboratory 
experiments that can be incorporated into the controls curriculum. 

• The extensive use of worked examples and illustrations, and the text 
structure (just-in-time philosophy) make the book easy to read and 
understand. The practical examples used to demonstrate the concepts 
and show their application are from different fields of engineering. 
This promotes holistic engineering education. 

• The use of MATLAB throughout the textbook helps to strengthen 
the grasping of concepts and solidify the development of a thorough 
understanding of computer implementation of control systems. 

• A comprehensive appendix containing the essential basics of MAT-
LAB, including laboratory exercises. 

• There is a move to a new engineering curriculum (emphasizing the 
multidisciplinary nature of engineering practice and the need for just-
in-time learning) sweeping throughout engineering schools in the USA, 
Europe, and Japan. This book is written with the specific objective 
of satisfying this new curriculum. None of the current books (the 
competition) satisfy the requirements of this new curriculum so well. 
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Chapter 1 

An .Introduction to Control 
Systems 

1.1 Introduction 
This chapter provides the background and motivation for the material 

presented in this book. The general principles and issues involved in the 
design and analysis of control systems are outlined and illustrated by using 
examples. Basic control system terms are introduced and defined. Open-
and closed-loop control system configurations are introduced and appraised. 
Classes of control systems are discussed and a broad spectrum of control 
system examples from various applications are presented. Advanced appli-
cations of control systems are outlined in addition to a discussion about 
the nature of the control design process. Brief descriptions of a variety of 
experiments that can be used to illustrate the material presented in the 
book are also included. The chapter provides a book outline as a road map 
through the contents of the book. 

Control is the process of causing a system variable to conform to some 
desired value or reference value. A system is any collection of interacting 
components for which there are cause-and-effect relationships among the 
variables. The components are connected so as to form a whole entity that 
has properties that are not present in the separate entities. Within this con-
text, a control system is then defined as an interconnection of interacting 
components forming a system configuration that will provide a desired sys-
tem response. Feedback is the process of measuring the controlled variable 
and using that information to influence the controlled variable. In order to 
understand the purpose of a control system, it is useful to examine exam-
ples of simple control systems. These simple systems incorporate the same 
ideas of control and feedback that are used in complex and advanced ap-
plications. Modern control engineering practice includes the use of control 
design strategies for improving manufacturing processes, efficient energy 

1 
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use and advanced automobile technology. These control principles are also 
used in rapid trausit systems, advanced robotic systems, and in the emerg-
ing fields of mechatronics and micro-electromechanical systems (MEMS). 
Mechatronics involves the synergistic integration of mechanics, electronics, 
and computer science to produce optimum products and systems. 

1.1.1 Background 

The field of engineering is concerned with the understanding, usage, and 
control of natural materials and forces for the benefit of humankind. Con-
trol system engineering is a sub-aspect of engineering that is concerned with 
understanding and controlling segments of the environment, often called 
systems, to provide useful economic products for society. The twin goals 
of understanding and control are complementary because effective systems 
control requires that the systems be understood and modeled. Furthermore, 
control engineering must often consider the control of poorly understood 
systems such as chemical process systems. The present challenge to con-
trol engineers is the modeling and control of modern, complex, multidisci-
plinary systems such as traffic control systems, chemical processes, robotic 
systems, mechatronic systems, and MEMS. At the same time, the engineer 
has the opportunity to control many useful and intellectually challenging 
industrial automation systems. Perhaps the most characteristic quality of 
control engineering is the opportunity to control machines, industrial and 
economic processes for the benefit of society. Control engineering is based 
on the foundations of feedback theory and linear system analysis, and it 
integrates the concepts of network theory and communication theory. 

Control engineering is ostensibly multidisciplinary. It is equally applica-
ble to aeronautical, chemical, mechanical, environmental, civil, and dcclri-
cal engineering. Feedback controllers are used in many different systems, 
from airplanes and rockets to chemical processing plants and semiconduc-
tor manufacturing. Quite often a single control system includes electrical, 
mechanical, and chemical components. The theory and practice of control 
systems are applicable to many disciplines other than engineering. As the 
understanding of the dynamics of business, social, and political systems 
increases, the ability to model and control these systems will also improve. 

1.2 A Recent History Control Systems 

During the 1980s, the utili:oation of digital computers for control com-
ponents became routine. The technology that allows these new control 
elements to perform accurate and rapid calculations was previously 
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unavailable to control engineers. These computers are employed especially 
for process control systems in which many variables are measured and con-
trolled simultaneously by the computer. With the advent of Sputnik (the 
first space vehicle) and the space age, another new impetus was imparted 
to control engineering. It became necessary to design complex, highly ac-
curate control systems for missiles and space probes. Furthermore, the 
necessity to minimize the weight of satellites and to control them very ac-
curately has spawned the important field of optimal control. Due to these 
requirements, the time-domain methods developed by Lyapunov, Minorsky 
and others have been embraced with great interest in the last two decades. 
Recent theoriec; of optirnal control developed by L. S. Pontryagin in the 
former Soviet Union and R. Bellman in the United States, and recent stud-
ies of robust systems have also contributed to the interest in time-domain 
methods. Control engineering must consider both the time-domain and the 
frequency-domain approaches simultam:ously in the analysis and design of 
control systems. 

Classical control theory, which deals only with single-input single-output 
(SISO) systems, is ineffectual for multiple-input-multiple-output (MIMO) 
systems. The availability of digital computers, from around 1965, made 
time-domain analysis of complex systems possible, leading to the develop-
ment of modern control theory based on time-domain analysis and synthe-
sis. This theory uses state variables to cope with the increased complexity 
of modern plants. These new methods also meet the stringent requirements 
on accuracy, weight, and cost in civilian, defense, space, and industrial ap-· 
plications. From 1965 to 1985, optimal control of both deterministic and 
stochastic systems, as well as adaptive and learning control of complex 
systems, were fully investigated. From 1980 to the present, developments 
in modern control theory have centered around robust control, H 00 con-
trol, multisensor-based control, robust estimation, and associated topics. 
Now that digital computers have become cheaper and more compact, they 
are used as integral parts of control systems. Modern control theory has 
also started to find its way into such nonenginccring systems as biological, 
biomedical, social, economic, and political system::>. 

1.2.1 Automatic Control 

The control of an industrial proccsfl (manufacturing, production, and pro-
cessing) by automatic rather than manual means is often called automation. 
Automation is the automatic operation or control of a process, device, or 
system. It is prevalent in chemical, electric power, paper, automotive, and 
steel industries, among others. The concept of automation is central to an 
industrial society. Automatic machines can be used to increase the produc-
tivity of a plant and to obtain high-quality products. Automatic control 
of machines and processc:-o is utilized to produce a product within specified 
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tolerances and to achieve high precision. Automatic control has played a 
vital role in the advancement of engineering and science. In addition to its 
extreme importance in space-vehicle, missile-guidance, robotic, and mecha-
tronic systems, automatic control has become an important and integral 
part of modern manufacturing and industrial processes. For example, au-
tomatic control is essential in the numerical control of machine tools in the 
manufacturing industries, in the design of autopilot systems in aerospace 
industries, and in the design of vehicles in automobile industries. It is 
also essential in industrial operations that require the control of pressure, 
temperature, humidity, viscosity, and fluid flow. Due to the importance of 
automatic control as a means of attaining optimal performance of dynamic 
systems, improving productivity and relieving the drudgery of many rou-
tine repetitive manual operations, most engineers and scientists must now 
have a good understanding of this field. The current revolution in com-
puter and information technology is causing an equally momentous social 
change: the expansion of information gathering and information process-
ing as computers extend the reach of the human brain. Control systems 
are used to achieve increased productivity and improved performance of a 
device or system. 

1.2.2 Multivariable Control 

Due to the increasing complexity of the systems that must be controlled 
and the interest in achieving optimum performance, the importance of con-
trol system engineering has grown in the past decade. As the systems 
become more complex, the interrelationship of many controlled variables 
must be considered in the control scheme. This leads to control systems 
that have more than one feedback loop, i.e., multi-loop control systems as 
opposed to single-loop control systems (one feedback loop). Such systems 
are nontrivial and are much more challenging than single-loop control sys-
tems. Most of the standard control system theory applies to single-loop 
control only: Multiple control loops are needed whenever a plant has mul-
tiple sensors or multiple actuators. In this case, the interaction of every 
feedback loop with every other feedback loop must be accounted for. While 
many single-loop concepts hold in principle in the multi-loop case, the tech-
nicalities are much more involved. The performance benefits of multi-loop 
control, however, are often far more than one would expect from a col-
lection of single-loop controllers. Such multivariable control is essential in 
multi-input multi-output (MIMO) systems, whereas single-loop control is 
sufficient for single-input single-output (SISO) systems. 
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1.3 The Basic Components of a Control System 
A control system is an interconnection of components forming a system 

configuration that will provide a desired response. The basis for analysis of 
a system is provided by linear system theory, which assumes a cause-effect 
relationship for the components of a system. The input-output relationship 
represents the cause-and-effect relationship of thG process, which in turn 
represents the processing of the input signal to provide an output signal 
variable, often with power amplification. 

All control systems have a similar basic structure and consist of the same 
basic components: 

@l Process (err Plant): This is the main physical component of a control 
system as it is the component (a dynamic system) whose output is 
to be controlled. Usually, a mathematical model of the process 1s 
required for its behavior to be understood and then controlled. 

• Actuator: A device that is used to physically influence the process. It 
is the muscle that receives the control signal from the controller and 
forces the plant to produce the desired output. 

Controller: An algorithm or mechanism that takes the error signal 
and generates the control signal required to drive the actuator. The 
controller is the "brain" of the control system and its design and 
analysis are the central motivation for the material in this 
book 

Sensor: A device that measures the actual system output and pro-
duces the rn.casured output. Sensors are not perfect; they are often 
affected by sensor errors and associated uncertainties. Hence there is 
always at least a slight difference between the actual and measured 
outputs. 

• Desired Output: The desired value for the output of the process being 
controlled, and achieving this desired output is the objective of a 
control system. 

® Actual Output: The actual state of the process that is to be controlled 
or influenced. It must be measured by a sensor and then compared 
with the desired output. 

"' CompandoT: This component takes the desired output and the mea-
sured output as inputs and generates an error signal that is the dif-
ference between the desired and measured outputs. This error signal 
is sent to the controller. 
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• Disturbance Signals or Noise: These are signals that are external to 
the control system but affect the process. Examples of disturbance 
signals include heat losses, electromagnetic radiation, and vibrations. 
A good controller eliminates or minimizes the effects of disturbances, 
i.e., it manifests effective disturbance rejection. 

These arc the components that arc common to all control systems irre-
spective of system complexity, nature of application, and type of dynamic 
system. However, depending on the type of control system, some compo-
nents are not relevant. For example, the open-loop control system does not 
require both the sensor and the comparator. 

1.4 Open-Loop Control vs. Closed-Loop Control 

There are two main configurations for control systems: 

• Open-loop 

e Closed-loop 

All control systems can be placed into these two general categories. In 
this section the general structures of these two configurations arc presented 
and their applications, advantages, and disadvantages are discussed. 

1.4.1 Open-Loop Control 

An open-loop control system utilizes a controller and actuator to obtain 
the desired response without using any measurement of the actual system 
response (controlled variable) to influence the system. Thus the objective of 
an open-loop control system is to achieve the desired output by utilizing an 
actuating device to control the process directly without the us<O of feedback. 
The elements of an open-loop control system are shown in Figure 1.1. 

Desired ~ .. ~, ~ ··-1 Process 
Output~~. 
(Reference Input) Control Signal 

FIGURE 1.1 
The Elements of an Open-Loop Control System 

Actual 
Output 

There are many applications where it is sufficient to use an open-loop 
control sysLem. In particular, closed-loop control methods are unnecessary 
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when system inputs and the plant model are known with total certainty, 
and there are no external disturbances. Also, open-loop systems are more 
convenient when obtaining the output measurement is either difficult or 
not economically feasible. For example, in a washer system, it would be 
quite expensive to provide a device that measures the quality of the washer 
output, i.e., cleanliness of the clothes. 

However, there are several limitations of open-loop systems which in-
clude: slow response, poor disturbance rejection, poor tracking un-
der uncertainties, high sensitivity to parameter errors (e.g., errors 
in plant or controller gains), and high to changes in calibration 
errors (hence recalibration is usually necessary). A thorough comparison of 
the benefits and limitations of open- and closed-loop systems is presented 
later. 

1.4.2 Closed-Loop 

In contrast to an open-loop control system, a closed-loop control 
utilizes a measure of the actual output to cowpare the actual output with 
the desired output response. The measure of the output is called the feed-
back signal. The elements of a general clcxicd-loop feedback control system 
are shown in Figure 1.2. A closed-loop control system compares a measure-
ment of the output with the desired output (reference or command input). 
The difference between the two quantities (the error signal) is then used to 
drive the output closer tu the reference input through the controller and 
actuator. 

Desired~[,-, . 11 L ~-
Output -~;Lo:rtiTOi er11 ,.,.~--'--------' 
(Reference) L .. . Control Signal 

Measured Sensor 

Actual 
Output 

Output 

FIGURE 1.2 
The Elements of a ·~.nuO>cou.-· .L''-' Control System 

Thus, a feedback control system is a control system that tends to main-
tain a prescribed relationship of one system variable to another by com-

functions of these variables and using the difference as a means of 
control. The system often uses a function of a prescribed relationship be-
tween the and reference input to control the process. Often the 
difference between the output of the process nnder control and the refer-
ence input is amplified and used to control the process so that the difference 
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is continually reduced. The feedback concept is the basis of control 
analysis and design. 

1.4.3 Advantages of Closed-Loop Systems 

Closed-loop sy::items have the following advantageei: 

• Faster response to an input signal 

41 Effective disturbance rejection 

e Better tracking of reference signals 

• Lmv sensilivity to system parameter errors (e.g., errors in plant or 
controller gains) 

e Low ::;ensitivity to changes in calibration errors (recalibration is 

unnecessary) 

011 More accurate control of plant under disturbances and internal 

variations 

• Effective and flexible control tuning by varying the control gain 

e Used to stabilize systems that are inherently unstable in the open-loop 
form 

1.4.4 Disadvantages of Closed-Loop 

The following are some of the disadvantages of closed-loop systemei: 

ill Require the use of sensors which increase the system costs 

e Involve more components which leads to more costs and complexity 

e The power costs (due to high gains) are high 

• More cornplex design, harder to build 

"' Sometimes obtaining the output measurement is either hard or not 
economically feasible 

e Initial tuning is more difficult. especially if the bandwidth is narrow 

• There is always a steady state error (with proportional controllers) 

e The system tends to become unstable as the gain is increased beyond 
certain limits 
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• Closed-loop control methods are unnecessary when system inputs and 
the plant model are known with total certainty, and there are no 
external disturbances 

• Closed-loop systems are not always controllable 

Essentially, the advantages of closed-loop systems are the disadvantages 
of open-loop and the disadvantages of closed-loop systems are the 
advantages of open-loop systems. The introduction of feedback enables the 
engineer to control a desired output and improve accuracy, but it requires 
attention to the issue of stability of response. Feedback is usee! for the 
purpose of reducing the error between the reference input aud the system 
output. However, the :oignificance of the effects of feedback in control sys-
tems is more complex. The reduction of system error is merely one of the 
many important effect::; that feedback may have upon a system. The ef-
fects of feedback on system performance characteristics such as stability, 
bandwidth, gain, disturbance, and sensitivity will be shown in Chapter 4. 

In order to understand the effects of feedback on a control system, it 
is essential that the phenomenon be examined in a broad sense. When 
feedback is deliberately introduced for the purpose of control, its existence 
is easily identified. However, there are numerous situations where a physical 
system that is normally recognized as an inherently non-feedback system 
turns out to have feedback when it is observed from a certain perspective. 

1.5 Control Systems 

There are several examples of control systems (open and closed-loop) in 
biological systems, daily activities, and industrial operations. These sys-
tems could be manual, automatic, or semi-automatic and they are presented 
here to show the pervasiveness and usefulness of control system principles 
in general, and feedback control system principles in particular. 

1.5.1 Manual Car Direction of Travel Control 

Driving an automobile provides a good example for both manual and 
automatic control. The driving activity is a pleasant task when the auto-
mobile responds rapidly to the driver's command. E-.1Iany cars have power 
steering and brakes, which utilize hydraulic amplifiers to arnplify the forces 
used for braking and steering. An example of manual control occurs when 
the driver has a desired path (direction) for the car, observes the actual 
path of the car and then forces the car, using the steering wheel, to follow 
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the desired path as closely as possible. Figure 1.3 shows a simple sketch of 
a car in a direction of travel under manual control. 

Desired Path 

FIGURE 1.3 
Control of a Car's Direction of Travel 

An annotated block diagram of the car's manual steering control system 
is shown in Figure 1.4, illustrating the sensor, process, and actuator. The 
driver's eyes are the sensors that obtain a measurement of the car's actual 
direction. The driver then compares the desired course with the measured 
course and generates c\TI error signal. This error sigual is then used by 
the clrin·r, who is the manual controller, to determine hmv to move the 
steering ·wheel (the actuator) so that the car (proccs:i) rnovcs in the desired 
direction. 

Actuator 
Desired 

Path 
+o-- Steerinf 

Whee 

Observed Path 

Sensor Output 

FIGURE 1.4 

----
Process 

Actuator 
Car 

Output 

Driver's 
Eyes 
Sensor 

A lVIanual Closed-Loop Control System for a Car 

Actual 

Path 

A typical result of the direction of travel ma1tual control is shown in 
Figure l.'J. The actual path tracks the desired path. 
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Desired Path 

Y~---~··· ... 
/:_- -~~ctual Path 

Time [sec] 

FIGURE 1.5 

/ 
/ 

Control of a Car's Path (Direction of Travel) 

1.5.2 Cruise Control for a Car 

/ 
/ 

/ 
/ 

/ 

/ 

/ 
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Automobile cruise control provides a good example of automatic controL 
Most modern cars have a cruise control facility where a desired car speed 
is set, a speedometer measures the actual speed of the vehicle, and the 
difference between the two is used to drive an automatic controller (a pro-
grammed processor). This controller sends a signal to the engine throttle 
so that more fuel ( ur less) is burnt for the car to travel at the desired speed. 
Figure 1.6 shows a general car's cruise control system where the car is the 
process, the speedometer is the sensor and the engine is the actuator. 

Actual 
Speed 

Control Signal 

Measured Speedometer r----------' 
Speed 

FIGURE 1.6 
A Car Cruise Closed-Loop Control System 

The car's cruise control system is very simple but very illustrative of 
control system phenomena. In Chapter 4, it is extensi vcly modeled and 
quantitatively a.naly:oecl in both its open- and closed-loop forms. 
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1.5.3 Automatic Water Level Control 

Water level control provides another simple platform to illustrate both 
manual and automatic control. Figure 1. 7 shows a schematic diagram of a 
liquid level control system. The automatic controller maintains the water 
level by comparing the measured level with a desired level and correcting 
any error by adjusting the opening of the pneumatic valve. 

Pneumatic Valve 

Inflow 

FIGURE 1.7 
Automatic Water Level Control Mechanism 

Figure 1.8 shows the corresponding block diagram of the water level con-
trol system where the water tank and its dynamics constitute the process, 
the float is the sensor, and the valve is the actuator. Thus, the mechanism 
automatically adjusts the water level until the desired level is achieved. 

Actuator 
Desired +Q-
Water _ 
Level 

Valve 

Float Position 
Sensor Output 

FIGURE 1.8 

Process 
Water 
Tank 

Float 

Sensor 

Block Diagram of an Automatic Water Level Control 

Actual 
Water 
Level 
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1.5.4 Manual Water Level Control 

For the water level control system a manual control system can be used 
instead of an automatic control system. In this case, the human operator 
knows the desired water level, observes the water level, and uses the dif-
ference between the two to determine how to turn the pneumatic valve so 
that the desired water level is achieved. The control system block diagram 
for such a manual control system is shown in Figure 1.9. 

Desired+Q-~ 

Level -~'-----~~-----
FIGURE 1.9 

Muscles 
& Valve 

E y es 

Water 
Tank 

A Manual Water Level Closed-Loop Control System 

Actual 
Level 

The eyes of the human operator now constitute the sensor, the operator's 
brain is now the controller, and the actuator consists of the operator's 
muscles together with the pneumatic valve. 

1.5.5 Turntable Speed Control 

Another interesting example is the open-loop and closed-loop control of 
a turntable. Many modern devices use a turntable to rotate a disk at a 
constant speed. For example, a CD player, a computer disk drive, and 
a record player all require a constant speed of rotation in spite of motor 
wear and variation and other component changes. Figure 1.10 shows an 
open-loop (without feedback) turntable control system. 

E:J 
t ..________,~---· I ~~lifier I 

Turntable 

DC~ 
Motor 

FIGURE 1.10 
Turntable Speed Control: Open-Loop System 
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Desir~d \ Amplifier I ~ -pc Motor I ·I Turntable I Actual 
Speea 1 '-· ___ __j_ Speed 
(Voltage) Control Signal 

FIGURE 1.11 
Turtable Control Open-Loop Syc;tem 

The DC motor is the actuator because it provides a speed proportional to 
the applied motor voltage. For the input voltage to the motor, an amplifier 
is used because it can provide the required power. This system uses a 
battery source to provide a voltage that is proportional to the desired speed. 
This voltage is amplified and applied to the motor. The block diagram of 
the open-loop system identifying the controller ( arnplifier), actuator 
motor), and the process (turntable) is shown in 1.11. 

l_ ~: _j 

Gq- · ·-1 ~\ilifier r-1 ---~'"-----' 
Tachometer 

FIGURE L12 
Turntable Control: Closed-Loop 

Desired 
Speed ~~,~ _iS!~l~~~---" 

Actual 
Speed 

~ Control Signal 

Measured\' -T-a-ch-~o-m-et_e_r_j----,-------__j 
Speed _ 

FIGURE 1.13 
Turntable Speed Control: Closed-Loop System 

In order to obtain a closed-loop turntable control system a sensor is re-
quired to measure the actual of the turntable. One such useful senc;or 
is a tachometer that provides an output voltage proportional to the speed 
of its shaft. The measured speed is then compared with the dec;ired speed 
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and the difference between the two speeds is used to drive the controller 
(the amplifier). Thus the closed-loop feedback system takes the form shown 
in Figure 1.12. The block diagram model of the feedback system is shown 
in Figure 1.13. The error voltage is generated by the difference between 
the input voltage and the tachometer voltage. The feedback control system 
is better than the open-loop system in Figure 1.10 because the feedback 
system is faster, responds to errors, and works to reduce these errors. De-
tailed and quantitative discussions of the benefits of feedback control are 
presented in Chapter 4. 

1.5.6 Blood Glucose Control 

Another illustration of open- and closed-loop control systems can be ob-
tained by considering blood glucose level monitoring, which is achieved 
by controlling insulin delivery. This is a common application of control 
engineering in the field of open-loop system drug delivery, in which math-
ematical models of the dose-effect relationship of the drugs are used. A 
drug-delivery system implanted in the body uses an open,-loop system, since 
miniaturized glucose sensors are not yet available. The best solutions rely 
on individually programmable, pocket-sized insulin pumps that can deliver 
insulin according to a preset time history. More-complicated systems will 
use closed-loop control for the measured blood glucose levels. 

The objective of a blood glucose control system is to design a system that 
regulates the blood glucose concentration in a diabetic person. The system 
must provide the insulin from a reservoir implanted within the diabetic per-
son. Thus, the variable to be controlled is the blood glucose concentration. 
The specification for the control system is to provide a blood glucose level 
for the diabetic that closely approximates (tracks) the glucose level of a 
healthy person. An open-loop system would use a pre-programmed signal 
generator and miniature motor pump to regulate the insulin delivery rate 
as ·shown in Figure 1.14. 

Programmed v(t) Motor, i(t) 
generator 

pump 
Insulin Motor & valve 

voltage delivery 
rate 

FIGURE 1.14 
Blood Glucose Control: Open-Loop System 

The feedback control system would use a sensor to measure the actual 
glucose level, compare this with the desired glucose level, and the error 
between the two levels to drive the amplifier. The amplifier then sends a 
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control signal to the actuator (motor pump and valve) so that more (or less) 
insulin is delivered into the process (blood, body, and pancreas). Figure 
1.15 depicts the block diagram of the blood glucose level closed-loop control 
system. 

. v(t) Motor, Insulin Body, Actual 

___,._Amphfier~-----'--- &umt . blood & glucose 
va ve dehvei) pancreas level 

rate 

-. Sensor [ 
-P t Measured glucose 

I level 

Desired glucose level 

FIGURE 1.15 
Blood Glucose Control: Closed-Loop Systexn 

1.5. 7 Manual Control of a Sound Amplifier 

Manual operation of a public address system presents another illustrative 
control system. The human operator is at the center of this system. The 
operator knows the desired sound level, his ears are the sensors that pick 
up a measure of the output sound, and then the operator compares the 
sound levels and appropriately uses the microphone, which in turn drives 
the amplifiers. 

Desired +!\ __ ~, . ~ 
sound _,_~ Microphone lr------
level '---------' 

Amplifier 

Perceived sound 

FIGURE 1.16 
Manual Closed-Loop Control of a Sound Amplifier 
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1.5.8 Feedback in Social, Economic, and Political Systems 
The principles of feedback and control are not restricted to engineer-

ing and biological systems. There are many applications and occurrences 
of feedback control concepts in the socioeconomic-political arena. Soci-
ety is composed of many feedback systems and regulatory bodies that are 
controllers exerting the forces on society necessary to maintain a desired 
output. A simplified model of the national income feedback control system 
is shown in Figure 1.17 [7]. 

Desired + 
~Q-~ Government~ 

NatiOnal - J I+ 
Income Government/ 

Spending 

Measure 

FIGURE 1.17 

Private business 
Investment National 

.---;B==-us----.in_e_s_s---, Income 
Productions 

Tax 
Deductions 

Application of the Principles of Feedback to Economic Systems 

Such a control network fosters understanding of government control and 
expenditure. Other loops in the system are consumers and taxes. Although 
social, political, and economic feedback systems are not very rigorous, they 
do provide useful information and system understanding. 

1.6 Classification of Control Systems 
Feedback control systems can be classified in a number of ways, depend-

ing on the purpose of the classification. For instance, based on the method 
of analysis and design, control systems are classified as linear or nonlin-
ear, and time-varying or time-invariant. When considering the type of 
signals used in the system, reference is often made to continuous-data and 
discrete-data systems, or modulated and unmodulated systems. Control 
systems are also often classified according to the purpose of the system. 
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For instance, a position-control system and a velocity-control system con-
trol the output variables according to ways implied by the names. The 
classification of a control system can also be defined according to the form 
of the open-loop transfer function. In general, there are many other ways 
of identifying control systems according to some special features of the sys-
tem. It is important that some of these more common ways of classifying 
control systems are appreciated so that a proper perspective is gai11ed be-
fore emba.rking on the analysis and design of these systems. The different 
classificaLion strategies can be summarized as follows: 

* Linear vs. nonlinear 

• Time-variant vs. time-invariant 

• Continuous-data vs. discrete-data 

• Single-input single-outpuL (SISO) vs. multiple-input multiple-output 
(MIMO) 

ll> Regulator vs. tracking 

• Purpose of control (e.g., position control or velocity control) 

• Form of open-loop transfer function 

Some of these classes are briefly discussed in the following sections. 

1.6.1 Linear vs. Nonlinear Control Systems 

This classification is made according to the met hods of analysis and de-
sign. Strictly speaking, linear f:lystems do not exist in practice, since all 
physical systems are nonlinear to some extent. Linear feedback control sys-
tems are idealized models fabricated by the analyst purely for the simplicity 
of analysis and design. When the magnitudes of signals in a control system 
are limited to ranges in which system components exhibit linear character-
istics (i.e., the principle of superposition applies), the system is essentially 
linear. But when the magnitudes of signals are extended beyond the range 
of the linear operation, depending UH the severity of the nonlinearity, the 
system should no longer be considered linear. For instance, amplifiers used 
in control systems often exhibit a saturation effect when their input signals 
become large; the magnetic field of a motor usually has saturation prop-
erties. Other common nonlinear effects found in control systems include 
the backlash or dead play between coupled gear members, nonlinear 
characteristics, and nonlinear friction or torque between moving members. 

Quite often, nonlinear characteristics are intentionally introduced in a 
control system to improve its performance or provide more effective con-
trol. :F'or instance, to achieve minimum-time control, an on-off (bang-bang 
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or relay) type of controller is used in many missile or spacecraft control 
systems. Typically in these systems, jets are mounted on the sides of the 
vehicle to provide reaction torque for attitude control. These jets are often 
controlled in a full-on or full-off fashion, so a fixed amount of air is applied 
from a given jet for a certain time period to control the altitude of the space 
vehicle. For linear systems, there exists a wealth of analytical and graphical 
techniques for design and analysis purposes. A majority of the material in 
this book is devoted to the analysis and design of linear systems. Nonlinear 
systems. on the other hand, are usually difficult to treat mathematically, 
and there are no methods available for solving a wide class of non-
linear systems. In the design of control systems, it is practical first to 
design the controller based on the linear-system model by neglecting the 
nonlinearities of tl!e system. The designed controller is then applied to the 
nonlinear model for evaluation or redesign computer simulation. 

1.6.2 Time-Invariant vs. Time-Variant Control Systems 

When the parameters of a control system are stationary with respect 
to time during the operation of the system, the system is called a time-
invariant system. In practice, most physical syt>tems contain elements that 
drift or vary with time. For example, the winding resistance of an electric 
motor will vary when the motor is first being excited and its temperature 
is rising. Another example of a time-varying is a guided-missile 
control system in which the mass of the missile dccrcasct> as the fuel on 
board is consumed during flight. Although a system 
without nonlinearity is still a linear system, the analysis and of this 
class of systems arc usually much more complex than that of the linear 
time-invariant systems. 

1.6.3 Continuous-Data vs. Discrete-Data Control Systems 

A continuous-data system is one in which the signals are functions of the 
continuous time variable t. Among all continuous-data control systems, 
the signals may be further classified as alternating current (AC) or direct 
current (DC). Unlike the general definitions of these terms in electrical 
engineering, in an AC control system the signals are modulated by some 
form of modulation scheme, and in a DC control system not all the signalo 
in the system arc unidirectional, otherwise there would he no corrective 
control movement.. A DC control system simply implies that the signals are 
unmodulated, but they are still AC signals according to the conventional 
definition. 

Typical components of a DC control system include potcnt.iometcrs, DC 
amplifiers, DC motors, and DC tachometers. AC control ems arc used 
extensively in aircraft and missile control systems in which noise and dis-
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turbance often create problems" using modulated AC control systems 
with carrier frequencies of 400 Hz or higher, the will be less suscep-
tible to low-frequency noise. Typical components of an AC control system 
include synchros, AC amplifiers, AC motors, gyroscopes, and accelerome-
ters" In practice, not all control systems are strictly of the AC or DC type. 
A system may incorporate a mixture of AC and DC components, using 
modulatorc; and demodulators to match the signals at various points in the 
system. 

Discrete data control systems differ from continuous-data systems in that 
the signals at one or more points of the system are in the form of either 
a pulse train or a digital code. Usually, discrete-data control systems are 
subdivided into sampled-data and digital control systems. Sampled-data 
control refer to a more general class of discrete-data systems in 
which the signals are in the form of pulse data" A digital control 
refers to the use of a digital or controller in the system, so that the 
signals are digitally coded, such as in binary code. In general, a sampled-
data system receives data or information only intermittently at specific 
instants of time. A sampled-data system can also be classified as an AC 
system since the signal of the: is pulse modulated. 

1.6.4 vs. 

A regulator control system is a control system whose desired output (the 
reference) is constant" Most control in industry, particularly the 
process industry, are of the regulator type. However, the desired ontput 
in many other systems is time-varying, i.e., t.hc reference signal L'J time-
variant and the controlled output i,; required to follow tbis signal as 
as possible. This situation characterizes the problem. 

1.7 System 

Engineering design is both an art and a science that together constitute 
one of the main functions of an engineer. It is a complex process in which 
both creativity and analysis play major roles. Design is the process of 
conceiving or inventing the forms, parts, and details of a system to achieve 
a specified purpose. Design can be thought of as planning for the 
emergence of a particular product or system. is an innovative acL 
whereby the engineer creatively uses knowledge and materials to specify 
the shape, function, and material content of a system. The steps can be 
summarized as follows: 
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• Determination of the need for a product or system 

* Development of the specifications of the solution to the need 

• Development and evaluation of various alternative solutions that meet 
these specifications 

• Determination of the best solution to be designed in detail and 

fabricated 

• Verification and validation of design 

Any design process starts with the establishment of specifications. Spec-
ifications are statements that explicitly state the desired characteristic of 
device or product and clearly outline its functions. The design of technical 
systems aims to achieve appropriate design specifications and rests on four 
characteristics: complexity, trade-offs, design gaps, and risk. Complexity 
of design results from the wide range of tools, issues, and knowledge used 
in the process. The large number of factors to be considered illustrates the 
complexity of the design specification activity, not only in assigning these 
factors their relative importance in a particular but also in giving 
them substance either in numerical or written form, or both. 

The design of control systems is a specific example of cmgineering design. 
Again, the goal of control engineering design is to obtain the configura-
tion, specifications, and identification of the key parameters of a proposed 
system to meet an actual need. The first step in the design process is to 
establish the sy~tem goals. For example, the may be to control the 
velocity of a motor accurately. The second step is to identify the ~variables 
that are to he controlled, for example, the velocity of the motor. The third 
step is to write the specifications in terms of the accuracy that must be 
attained. This required accuracy of control then leads to the identification 
of a. sensor to measure the controlled variable. The strategy is to proceed 
to the first attempt to configure a system that results in the desired con-
trol performance. This system configuration normally consists of a sensor, 
the process under control, an actuator, and a controller. The next 
consists of icleutifying a candidate for the actuator. This depends on the 
process, but the actuation chosen must be capable of effectively adjusting 
the performance of the process. For example, if the objective is to control 
the speed of a rotating flywheel, a motor is selected as the actuator. The 
sensor, in this case, needs to be capable of accurately measuring the speed. 
The next step is then to obtain models for the actuator and sensor. This 
is followed by the design and selection of a controller, which often consists 
of a summing amplifier that compares the desired response and the actual 
response and then forwards this error-measurement signal to an amplifier. 
The final step in the design process is the adjustment of the parameters of 
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the system in order to achieve the dec;ired performance, The control 
design process can be summarized as follows: 

@) Establishment of control goals 

~» Identification of the variables to be controlled 

• Development of the specilications for the variables 

• Establishment of the system configuration and identification of the 
actuator 

0 Design of the controller and selection of parameters to be adjusted 

e Optimization parameter and analysis of performance 

• Verification and validation of design 

If the performance does not meet the specifications, then the configura-
tion and the actuator are iterated. If the performance meets the specifica-
tions, the design is finalized and the parameters adjusted accordingly. The 
design is finalized and the results arc then documentccL If the performance 
still does not meet the specifications, there is a need to establish an im-
proved system configuration and perhaps select an enhanced actuator and 
sensor. The design process is then repeated until the specifications are met, 
or until a decision is made that the specifications are too demanding and 
should be relaxed. 

As an illustration, the performance specifications could describe how a 
closed-loop system should perform and will include: 

• Effective disturbance rejection 

• Fast and desirable system response 

• Realistic actuator signals 

• Low sensitivities to parameter variations 

"' Robustness 

The control design process has been dramatically affected by the ad-
vent of powerful and inexpensive computers that characterize the infor-
mation age, and the availabiliLy of effective control design and analysis 
software. For example, the Boeing 777, which incorporates the most ad-
vanced flight avionics of any U.S, commercial aircraft, was almost entirely 
computer-designed. Design verification of final designs is essential in safety-
security critical systems (such as nuclear plants, ambulance systems, and 
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surgery/ emergency room systems) and high-fidelity computer simulations 
(advanced flight avionics). In many applications the certification of the 
control system in realistic simulations represents a significant cost in terms 
of money and time. The Boeing 777 test pilots flew about 2400 flights 
in high-fidelity simulations before the first aircraft was even built. Thus, 
system verification and validation constitute essential aspects of the design 
and analysis of control systems. 

1.8 Applications of Control 

Control have advanced applications in the areas of large 
scale systems, multisensor systems, space structures, manufacturing and 
flexible structures. Of particular interest are the specific fields of robotics, 
mechatronics, MEMS, and aerospace. In the following subsections a number 
of examples are discussed. 

1.8.1 A Modular and Scalable Wheeled Mobile Robot 
Robotics involves the study, design, and construction of multifunctional 

reprogrammable machines that perform tasks normally ascribed to human 
beings. A wheeled mobile robot (WMR) is an autonomous vehicle system 
whose mobility is provided by wheels. It is a multisensor ami multiactu-
ator robotic that has nonlinear kinematics and distributed means 
of acquiring information. A modular robotic vehicle has the san1e fnnc-
tion as any couventional robot except that it is constructed from a small 
number of staudarcl units. The benefits of modular technology include: 
easier system design and mainlcnance, scalability (the ease with which the 
number of modules is increased or decreased), flexibility of both design and 
application, system survivability (graceful degradation under system fail-
ure), reduced system costs, and improved system reliability (use of multiple 
sensors and redundancy). Each module has its own hardware and soft-
ware, driven and steered units, sensors, communication links, power unit, 
kinematics, path planning, obstacle avoidance, sensor fusion, and control 
systems. There is no central processor on the vehicle. Vehicle kinematics 
and dynamics are invariably nonlinear and sensor observations are also not 
linearly dependent on sensed states. These kinematics, models am! obser-
vation spaccc; must be distributed to the vehicle modules. A single WMR 
vehicle consists of three driven and steered units (DSUs), three battery 
units, power unit, communication units and sensors. The DSUs commu-
nicate by use of transputer architecture. There is no fixed axle; all three 
wheels arc driven and steered. Thus the WMR is omni-directional. 
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Figure 1.18 shows a modular \Vl\IR. system consisting of t"INo coupled 
\VMR.s with rnounted RCDD sonar trackers. Each differential sonar sensor 
rotates and tracks environment features. By tracking the range and bearing 
to these features over time, two or more sonars can provide continuous 
updates of vehicle position. This vehicle system effectively demonstrates 
the scalability, flexibility. and adaptability of a modular W J\lR system. Ii 
consists of 18 modular chassis frames, six wheels and four DSUs. Both 
WMR.s use the same software (modular software design) on component 
units. The processors on the scaled vehicle include four transputers for 
the four DSlJs .. one transpttter to nm software ancl two more to run server 
processes. 

FIGURE 1.18 
A Modular and Scalable WMR System 

The vehicle system employs multiple sensors (sonar sensors, encoders, 
potentiometers) to measure its body position and orientation, wheel posi-
tions and velocities, obstacle locations and chang;es in the terrain. Sensor 
iuformation from the modules is fuc;cd in a dE;ccntralized way and used to 
generate local control for each moclulf:. F'or the benefits of modularity to be 
functional and effective, fully decentralized and scalable multisensor fusion 
and control are mandatory. 

A multiscnsor system ;.;uch as the \VMR. system employs several sensors 
to obtain information in a real-world environment full of m1ccrtainty ancl 
change. ln order to provide autouomous navigation, path planning and ob-
stacle avoidance for the WMR, it is essential that the information obtained 
from the :-ocmors is interpreted and combined in omch a way that a reliable. 
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complete, and coherent description of the system is obtained. This is the 
data fusion problem. Multisensor fusion is the process by which informa-
tion from many sensors is combined to yield an improved description of the 
observed system. The sensor fusion algorithms are then extended to opti-
mal control algorithms for the \VIVIR. The work presented in this book lays 
the foundation for the design and analysis of such multisensor fusion-based 
control systems. 

1.8.2 The Mars Sojourner Rover 

One robotic vehicle that fired many researchers' imagination in 1997 
was the NASA Mars Pathfinder Mission's Sojourner which car-
ried ont exploration on ~ars. The Prospector spacecraft containing the 
Rover landed on fiiars on July 4th 1997. The Mars Pathflnder Rover team 
planned a vehicle traverse from the Rover Control Workstation at NASA 
(Jet Propulsion Laboratory) in Pasadena, California. Due to the speed-of-
light time delay from Earth to Mars (11 minutes), and the constraint of a 
single uplink opportunity per day, the Rover vvas required to perform its 
daily operations autonomously. These activities included terrain naviga-
tion, rock inspection, terrain mapping, and response to contingencies. 

During traverses the Rover used its look-ahead sensors (five laser stripe 
projectors and two CCD cameras) to detect and avoid rocks, dangerous 
slopes, and drop-off hazards, changing its path as needed before turning 
back toward its Bumpers, articulation sensors, and accelerometers 
allowed the Rover to recognize other unsafe conditione;. The hazard de-
tection system could also be adopted to center the Rover on a rock 
in preparation for deployment of its spectrometer. Other on-board experi-
ments characterized soil mechanics, dust adherence, soil and 
vehicle traverse performance. The Mars Rover is shown in 1 .1 D. 

The capability of the Rover to operate in an umnodeled environment, 
choosing actions in response to sensor inputs to accomplish requested ob-
jectives, was unique among robotic space missions to date. As a complex 
and dynamic robotic vehicle characterized by a myriad of functions and 
different types of sensors while operating in an unmodeled and cluttered 
environment, the Sojourner Rover is an excellent example of a multisensor 
and multiactuator system. 

Design modularity, decentralized estimation, and control provide certain 
advantages that would be relevant to the Rover. For if each 
wheel or unit is monitored and controlled by an independent mechanism, 
decentralized sensor processing and local control can permit the Rover to 
continue its mission even if one or more wheels/units are incapacitated. 



26 Design and Analysis of Control Systems 

FIGURE 1.19 
The Mars Sojourner Rover (Photo Courtesy of NASA) 

In addition, information from the variom; sensors will be efficiently utilized 
to take optimal advantage of the redundancy inhemut in the Rover's mul-
l iple sensors. The 23-puund Rover is sular-powcred and cau !Jc controlled 
from Earth by sending it path commands. The Rover control ::;ystem can be 
operated with or vvithout feedback. The objective is to operate the Rover 
with modest effects from disturbances (such as rocks) and with low sensitiv-

to cha11gcs in control gains and syst.em paramdcr variation;;. Designill)',, 
analyzing. ancl implementing robust adaptive <\lid optimal control systems 
for complex, compact, multisensor and multiactuator applications such as 
the Rover provide the motivation for the material covered in this book. 

1.8.3 Mars Surveyor 2001 O:rbiter and Lander 

The NASA Mars Surveyor 2001 is the next-generation spacecraft to be 
sent to Mars and consists of an orbiter and lander launched separately on 
1Icd-Lite launch vehicles. The Mars Surveyor 2001 Orbiter is scheduled 
for launch on April 18, 2001. It will arrive at Mars on October 27, 2001, 
if launched on schedule. The 2001 Orbiter will be the first to use the 
atn10spherc of Mars to slow down and directly capture a spacecraft into 
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orbit in one step, using a technique called aerocapturc. It will then reach 
a circular mapping orbit within about one week after arrival. The Orbiter 
will carry two main scientific instruments, the Thermal Emi:osion Imaging 
System (THEMIS) all(] the Gamrna Ray Spectrometer . THEMIS 
will map the mineralogy and morphology of the Martian surface using a 
high-resolution camera and a thermal infrared imaging spectrometer. The 
GRS will achieve global mapping of the elemental composition of the sur fan: 
and the <llmudance of hydrogen in the shallow subsurface. The gamma 
ray spectruJncter was inherited from tht' lust Mars Observer mission. The 
2001 Orbiter will also support communicaticJll with the Lander and Rover 
scheduled to arrive on Jan. 22, 2002. The orbiter is shown in Figure 1.20. 

FIGURE 1.20 
Mars 2001 Orbiter (Photo Courtesy of NASA) 
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The l\ I ars Surveyor 2001 Lander is scheduled fur launch on April 10, 
2001. It will land on Mars ou .Jan. 22, 2002, if launched on schedule. The 
2001 Lander will carry an imager to take pictures of the surrounding ter-
rain during its rocket-assisted descent to the surface. The descent imaging 
camera will provide images of the landing site for geological analyses, and 
will aid in planning for initial operations and tnn•crscs by the Rover. Tlw 
2001 Lawler will also be a pla1Jonn for instruments and technology exper-
iments designed to provide key insights into decisions regarding succ('ssful 
and cost-effective human missions to Mars. Hardware on the Lander will 
be used for an insdu demonstration test of rocket propellant production 
using gases in the .Martian atmosphere. Other equipment will characterize 
the Martian soil properties and surface radiation environment. The Lander 
is shown in Figure 1.21. 

FIGURE 1.21 
Mars 2001 Lander (Photo Courtesy of NASA) 
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1.8.4 Deep Space 1 

With the coming new millennium, NASA envisions an ambitious space 
exploration program through which the frontiers of the universe can be 
pushed back. Part of this vision is a challenge for engineers who must de-
velop and design the control system for an extraordinary spacecraft of the 
future. The NASA New Millennium Program, with its advanced technol-
ogy focus, is one of NASA's many efforts to develop and test an arsenal 
of cutting-edge technologies and concepts. Once proven to work, these 
technologies will be used by future missions to probe the universe. Deep 
Space 1, the spacecraft launched on October 24 1998 from Cape Canaveral, 
Florida, was the first in a series of deep space and Earth-orbiting missions 
that will be conducted to demonstrate new technologies in a space-borne 
testbed. Its mission to "validate" technologies pioneered the way for future 
spacecrafts to have an arsenal of technical capabilities for exploring the 
universe. As an experimental mission, Deep Space l's primary goal was 
to test new technologies that had never been tested in space before: ion 
propulsion, autonomous systems, advanced microelectronics and telecom-
munications devices, and other exotic systems. The focus is on testing 
high-risk, advanced technologies in space with low-cost flights. Though 
testing technologies is the primary goal of the flights, they also allow an 
opportunity to collect scientifically valuable data. The idea was that most 
of the technologies on Deep Space 1 would have been completely validated 
during the first few months of flight, well before its encounter with an as-
teroid, where it would further test its new multisensor instrumentation, 
robust control system, and navigation technology. 1.22 shows the 
Deep Space 1 

The spacecraft uses ion propulsion which is a technology which involves 
ionizing a gas to propel a craft. Instead of a spacecraft being propelled 
with standard chemicals, the gas xenon (which is like neon or h(~lium, but 
heavier) is given an electrical charge, or ionized. It is then electrically ac-
celerated to a speed of about 30 kmjsecond. When xenon ions are emitted 
at such high speed as exhaust, they push the spacecraft in the opposite di-
rection. The ultimate speed of a spacecraft using ion thrust depends upon 
how much propellant it carries. The same principle applies to chemical 
propulsion systems, although they are much less efficient. The ion propul-
sion system carries about 81.5 kilograms of xenon propellant, and it takes 
about 20 months of thrusting to use it all. It increases the speed of the 
spacecraft by about 4.5 kilometers per second, or ahont 10,000 miles per 
hour. Deep Space 4 is expected to use four ion engines to fly alongside a 
comet in 2004 so that it can land. 
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FIGURE 1.22 
Deep Space 1 Spacecraft (Photo Courtesy of NASA) 

1.8.5 The Experimental Unmanned Vehicle (XUV) 

The motivation behind the USA Army Research Laboratory (ARL) DEMO 
III project is to provide 21st-century land forces with a family of highly 
mobile, multi-functional, intelligent, and unmanned ground vehicles. This 
work is part of what has been called Force 21, or !he "lrmy after the Nu;i 
Century. The objective is to achieve a "leap aluad'' capability acrose; the 
spectrum of conflict in the digital battlefield of the future. The research 
work involves designing, verifying, validating, and building experimental 
unmanned vehicles (XUVs) such as the one shown in Figure 1.23. The 
mission is to use multiple, autonomous, and cooperating Xl'Vs in battle-
field environments that could be fraught with landrnines, and chemical or 
biologica.l weapons. In designing ancl evaluating the the perfonwmce 
goals can be grouped into five categories: mobility. planning, cornnnmica-
tions, controL and overall S)"Stcm performance. The mobility requirements 
include speed up to 40mph (daylight), 20rnph (bad conditions), lOmph 
(night). A multi-thread, robust, adaptive, highly modular, and intelligent 
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control SI'Stem is required for the Xt:v, The competence of the vehicle hc-
haviors i;, desired to be feasible at four interchangeable levels (which arc 
dependent on the battle situation): total mdonomy, semi-autonomy, super-
vised autonomy, and telr:-operation, The work involves a myriad of techno-
logical issues such as intelligent subsy8tcm architecture for robust and adap-
tive control, operator interface for nonautonomml:i behaviors, augmented 
machine world model-based survivability beba,,iors, connection to 
the digital hat tlcficld archii.cc:i.ttre, and extensive usc of multiple :i('nsors: 
FLIR, GHz radar, CCD camera, mm wave radar, laser, encoders. 

FIGURE 1.23 
The Experimental Unmanned Vehicle (XUV) (Photo Courtesy of 
the USA 

Some of the research problems in the XUV inclnd(: the followiug: mclp 

sharing, informatio11 exchange, multiscnsor fu8ion, communication and co-
ordination for multiple autonomous vehicles (XUVs) in battlefield environ-
ments, The map sharing capability is to n8c sensor infonnation to augment 
the information available a priori from map data. Tn order to autonomously 
avoid these haz;wdous regions of h•rrain, multiple c;eHsors and muliic,cnsor 
fusion algorithm;; will be inicgra(.(•d to detect aJl(l then i o avoid these area~. 
Further is:m~·~ addressed as part of the DEMO 111 project include require-
ments for different comnmnication modes (e.g., vehicle-vehicle, operator-
vehicle and center-vehicle), communication network topologies (and their 
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reconfiguration), vehicle coordination outside communication range, and 
coordinated recovery from errors. 

The XUV is essentially a wheeled mobile robot. Robotics can be under-
stood as the intelligent connection of perception to action. The perception 
is achieved by the use of multiple sensors which send their information to an 
intelligent controller that generates intelligent instructions (control signals) 
and sends them to the actuator (motors and drives), which then executes 
the appropriate action. 

1.8.6 Magnetic Levitation 

Magnetic levitation provides the mechanism for several new modes of 
transportation. Magnetically levitated trains provide a high-speed, low-
friction, low-noise alternative to conventional rail systems. The dynamics 
of magnetic levitation are inherently unstable, and thus require a controller 
to make the system behave in a useful manner. In fact, magnetic levitation 
systems are open-loop unstable, hence feedback control is required. Here 
the system is the mass of the train levitated by field-inducing coils. The 
input to the system is the current to the coils. The objective is to keep the 
train a safe distance above the coils. If the train is too high, it will leave 
the magnetic field and possibly veer to one side or the other. If the train 
is too low, it will touch the track with possibly disastrous results. 

The response times in this system are fast, in the order of fractions of a 
second. Rather than using steel or rubber wheels, magnetically levitated 
trains ride on a nearly friction-free magnetic field. These trains provide 
a high-speed, lmv-friction alternative to the cmwelltional metal-wheels-on-
metal-rails configurations. The dynamics of the levital.ion system are in-
herently unstable, as can be deduced from the modeled thrust dynamics. 
Linearization leads to a transfer function between perturbations in the cur-
rent and perturbations to the displacement from their nominal values and 
hence makes the use of feedback a very attractive option. Note that this 
system is inherently unstable; it has poles in the right-hand plane. A feed-
back control system can be designed by measuring the perturbations and 
passing the out.put through a controller and an actuator. 

A magnetic levitation experiment, which dramatically demonstrates closed-
loop levitation of permanent and ferromagnetic elements, is discussed later 
in the section that deals with control systems experiments. 

1.8. 7 Process Control: Metal Rolling Mill 

Feedback control systems have been particularly successful in controlling 
manufacturing processes. Quantities such as temperature, flow, pressure, 
thickness, and chemical concentration are often precisely regulated in the 
presence of erratic behavior. In a steel-rolling mill, slabs of red-hot steel are 
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rolled into thin sheets. Some new mills do a ~ontinuous pour of steel into 
sheets, but in either case, the goal is to keep the sheet thickness uniform 
and accurate. In addition, periodically the thickness must be adjusted in 
order to fulfill orders for different thicknesses. The response times in this 
system are relatively slow, from a few minutes to an hour. 

1.9 Examples of Control System Experiments 
This section outlines a number of new demonstrative, modern and prac-

tical control systems experiments that can be used to test and validate the 
material presented in this book. These experiments consist of real-time 
control design and implementation exercises that can be used in educa-
tion and research. They are commercially available from such companies 
as Educational Control Products (ECP), Quanser Consulting Incorporated, 
and Mechatronic Systems Incorporated. The experiments are ideal for im-
plementing and evaluating feedback strategies such as proportional-integral-
derivative (PID ), linear quadratic Gaussian (LQG), H 00 , fuzzy logic, neural 
nets, adaptive and nonlinear controllers. They are appropriate for all levels 
of university education and research, and include linear motion experiments 
that aptly utilize the concept of modularity. Modularity enables the reader 
to cost effectively employ the same power plant to perform experiments 
of varying complexity. By coupling the appropriate module to the plant, 
one achieves configurations ranging from simple position servo control to 
advanced MIMO systems such as the Seesaw /Pendulum. In addition, there 
are also available modular systems-specialty experiments including a 3-
degrees of freedom (3-DOF) helicopter and earthquake simulating shaker 
table. Accessories include power modules and the MultiQ data acquisition. 
The experiments outlined are the Inverted Pendulum, Magnetic Levitation, 
2-DOF Helicopter, 3-D OF Helicopter, 2-DOF Robot and Pendubot. 

Most computer programs that are used to illustrate and demonstrate 
the design and analysis of control systems are implemented using MAT-
LAB software. This is an interactive high-level programming language for 
numerical computation and data visualization. The basic principles and 
illustrative examples of this language are presented in Appendix B. 

1.9.1 Inverted Pendulum 
This unique ECP inverted pendulum design vividly demonstrates the 

need for and effectiveness of closed-loop control. It is not the conventional 
rod-on-cart inverted pendulum, but rather steers a horizontal rod in the 
presence of gravity to balance and control the vertical rod. As detailed 
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analytically in the manual, the plant has both right-half plmw poles and 
zeros as well as kinematic and gravitationally coupled nonlinearities. By 
adjusting mass properties, the characteristic roots may be varied to make 
the control problem range from being relatively simple to theoretically im-
possible. The invmted pendulum iti shown in Figure 1.24. 

FIGURE 1.24 
The Inverted Pendulum Experiment (Photo Courtesy of ECP) 

The mechanism includes removable and adjustable moment-arm counter-
weights on the vertical and horizontal rods for easy adjustment of plant 
dynamics. It features linear and rotary ball bearings at the joints for low 
friction and repeatable dynamic properties. This system is furnished with 
a set of experiments that provide for the identification of system dynamics 
and implerncnt various control schemes for nonminimum phase and condi-
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tionally stable plants (right-half plane poles and zeros). 
The Model 505 Inverted Pendulum apparatus is a unique mechanism 

that provides vivid demonstrations and challenging experiments for both 
undergraduate and graduate studies in controls. This novel design steers 
a horizontal sliding rod in the presence of gravity to balance and control 
the position of the vertical ("pendulum") rod. The mechanism is open-
loop unstable (right-half plane pole) and non-minimum phase (right-half 
plane zero). As a result, feedback control is essential for stability and the 
structure of the controller must be selected carefully clue the nonrninimum 
phase characteristics. 

1.9.2 2-DOF Helicopter Experiment 

The Quanser 2-DOF (degrees of freedom) Helicopter experiment consists 
of a helicopter body with 2 motors equipped with propellers. The two 
propellers control the pitch and yaw of the body, which are measured using 
4095 counts/rev encoders. The body is free to yaw an infinite number 
of times thanks to the slipring design. The slipring eliminates tangled 
wires and reduces the loading about the rotating axes to a minimum. The 
system is supplied with a joystick to compare human operator performance 
with computer control. The system is a highly coupled sixth orderMIMO 
system. All mathematical models and controllers are supplied. The 2-DOF 
helicopter is shown in Figure 1.25. 

The 2D flight simulator experiment consists of a helicopter model mounted 
on a fixed base. The helicopter model has two propellers driven by DC mo-
tors. The pitch propeller and the yaw propelleT are used to control the 
pitch and yaw of the model. Motion about the two degrees of freedom is 
measured u;;ing two encoders. The purpose of the experiment is to design a 
controller that facilitates commanding a desired pitch and yaw angle. The 
performance of the system is also examined with an operator in the loop. 
A joystick is supplied that allows commanding the motors in an open-loop 
configuration in order to compare human operator performance with com-
puter control. The joystick will also be used to provide the operator with 
a closed-loop controller that improves operator performance and makes the 
system easier to use. Electrical signals and power from the pitch encoder 
and the two motors are transmitted via a slipring. This allows for unlimited 
yaw and eliminates the possibility of wires tangling on the yaw axis. 

A complete mathematical model including propeller dynamics and forces 
generated by the propellers is very difficult to obtain. The method used 
to design a controller is based on parameter estimation. Before parameter 
estimation can be performed however, a simple model that shows the re-
lationships between the axes of motion and the inputs is developed. The 
pitch propeller is driven by a DC motor whose speed is controlled through 
the input voltage. 'fhe speed of rotation results in a force that acts normal 
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FIGURE 1.25 
2-DOF Helicopter Experiment (Photo Courtesy of Quanser Con-
sulting Inc.) 

to the body at a distance from the pitch axis. The rotation of the propeller 
however, also causes a load torque on the motor shaft, which is in turn seen 
at the yaw axis (parallel axis theorem). 

e The dynamics of the rotating propellers will also affect the yaw and 
pitch axes but these effects are considered negligible. 

o The response to a voltage input does not result in immediate response 
of the propeller speeds or output forces. The time constants are con-
sidered to be much faster than the body dynamics. 

e Centrifugal forces during a yaw rotation will affect the pitch axis. 

e Air turbulence around the body will result in unknown disturbances. 
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1.9.3 3-DOF Helicopter Experiment 

The Quanser 3-DOF Helicopter experiment consists of a helicopter body 
with two motors equipped with propellers. The two propellers control the 
pitch and elevation of the body, which nre measured using 4095 counts/rev 
encoders. The body is free to travel (circular motion) an infinite number 
of times thanks to the slipriug design. The slip ring eliminates tangled 
wires and reduces the loading about the rotating axes to a minimmn. Tl1e 
system is su ppliccl with a joy:, tick to compare human operator performance 
with computer control. The system is a highly coupled eighth-order MIMO 
system. All mathematical models and controllers are supplied. 

FIGURE 1.26 
3-DOF Helicopter Experiment (Photo 
suiting 

of Quanser Con-

The :)-DOF Helicopter consists of a base upon which an arm is mounted 
as shown in Figure 1.26. The arm carries the helicopter body on one end 
and a counterweight on the other. The arm can pitch about an "elevation" 
axis as \\Tll as swivel about 8 verticnl (travel) axis. Encoders mounted on 
these axes allow for measuring the elevation and travel of the arm. The 
helicopter body is free to :-;wiwl ahout a "pitch" axi~. The pitch angle 
is measured \ i<t a third encoder. Two motors with propellers mo1mtcd 
on the helicopter body can generate a force proportional to the voltage 
applied to the motors. The force generated by the propellers can cause the 
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helicopter to lift off the ground. The purpose of the countervveight 
is to reduce the power requirements on the motors. The counterweight is 
adjusted such that applying about 1.5 volts to each motor results in hover. 
All electrical signals to and from the arm are transmitted via a slipring with 
eight contacts, thus eliminating the possibility of tangled wires and reducing 
the amount of friction and loading about the moving axes. The purpose 
of the experiment is to design a controller that facilitates commanding the 
helicopter to a desired elevation and a desired travel rate or position. 

The pitch axis is controlled by the difference of the forces generated by 
the propellers. If the force generated by the front motor is higher than the 
force generated by the back motor, the helicopter body will pitch up. The 
only way to apply a force in the travel direction is to pitch the body of the 
helicopter. This controller can also be designed as a second-order controller 
by selecting a desired peak time and damping ratio. The attractive feature 
in the structure of this controller is that we can limit the pitch command 
to not exceed a desired value. For example, we can limit pitch command to 
not exceed 20 degrees so that a "comfortable" ride is obtained. This limits 
the acceleration in the system. 

1.9.4 2~DOF Robot 

The Qu;mser 2-DOF Robot module converts two STIV-02 plants to em 
experiment in robotic control. Using the five bar mechanism, students can 
be taught the fundamentals of robotics such as forward kinematics, inverse 
kinematics, singularities, force feedback control, and task teaching. The 2-
DOF robot is shown in Figure 1.27. This is the first of the three :\IEVIO 
experiments that can be perCormed using the SRV-02. In order to 
this experiment, the following is required: 2x PA-0 1 03, 2x SRV-02 aucl 
one 2-DOF Robot module. 

The 2-DOF Robot module consists of four links attached through joints 
and a support base to which two SRV-02s are mounted. The two SRV-02 
plants are mounted to the support base using the eight supplied clamps. 
The purpose of the experiment is to design a controller that positions the 
end effector 3) in a desired location and makes it track a preYiously 
learned trajectory. 

1.9.5 Magnetic Levitation Experiment 

ECP's unique MagLev plnnt dramatically demonstrates closed-loop levi-
tation of permanent and ferromagnetic elements. 'I he apparatus, wil.h laser 
feedback and high flux magnetics, provides visually fascinating regulation 
and tracking demonstrations. The magnetic levitation experiment is shown 
in Figure 1.28. The system can be set up in both the open-loop stable and 
the unstable configurations. By using a repulsive field from the bottom 
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FIGURE 1.27 
2-DOF Robot Experiment (Photo Courtesy of Quanser Consult-
ing Inc.) 

urive coil, a stable plant is effecteu, while the upper coil can be useu in 
an attractive mode producing an open-loop unstable system. By adding a 
second magnet and driving both actuators, MIMO control is studiecL The 
apparatus utilizes very high magnetic 1lnx streng1 hs to effect large displace-
Jucnts and thereby provide visually stimulating clernonstra1 ions. 

The field interaction between the two magnets causes strong cross cou-
pling and thus produces a true multivariable system. The inherent magnetic 
fidd nonlincarities can he inverted hy using the provided real- time algo-
rithms for liuc;H control implementation or by considering the full system 
dynamics. An optional turntable accessory provides graphic demonstration 
of induced field levitation: the principal used in high-speed bullet tra.ins. A 
set of experiments is included with this system that provides for the iden-
tification of system dyn;unics and implements various linear and nonlinear 
control schemes for the SISO and Ml.l\.10 plant configurations. 

1.9.6 The Pendubot 

The Pemluhut is a nmtruls and robotics experimental platform produced 
by J\Iechatronic Systems, Inc. The name Pendubot is short for Pendulum 
robot. This name is derived from the fact that the Pendubot is like ·a 
two-link robot with the c;cc:ond motor removed. where the second link i:-o 

unactuated and thus frclc to swing like a pendulum. In facL the challenge 
in controlling the Pendubot is basically one of moving the first (or actuated) 
link to control the second (or passive) link. The Pendubot is, in some ways, 
similar to the classic inverted pendulum on a carL vvhere the linear motiou 



40 Design and Analysis of' Control Systems 

FIGURE 1.28 
Magnetic Levitation Experiment (Photo of 

of the cart is used to balance the pendulum. The difference is that the 
Pcndubot uses the rotational motion of the first link to balance the second 
(pendulum) link. Figure 1.29 shows a Pcndubot. 

This Pendubot is one of the newest and most advanced devices for con-
trols education and research. It can be used for instruction at all levels; as 
simple demonstrations to motivate and instruct freshmen in the important 
concepts of dynamics and the systems approach to design; in 
junior-lcn:l courses in linear control systems; in senior courses i11 lliC('hatron-
ics and real-time control; all the way to advanced gradnai c-kn:l ctmrscs in 
nonlinear conlrul llwory. The Pendubot provides a wlwn· students 
can sec first hand how linear models of nonlinear s\·stcllls arc, in general, 
operating point dqJc:nclcnt, and what it means physicilly for a system to 
be urH·oni rolla! lie. 
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FIGURE 1.29 
The Pendubot (Photo Courtesy of Mechatronic Systems Inc.) 

In addition, the Pendubot is a useful research platform in such areas 
as system id(~ntificat ion, linear control, nonlinear controL optimal controL 
learning control, robust and adaptive control, fuzzy logic control, intelligent 
control, hybrid and switching control, gain scheduling, and other control 
paradigms. One cau program I he Pcudubot for swing-llp controL balanc-
ing, regulation and tracking, identification, g;1in sclwduling, distmbanc:c 
rejection, and friction compensation. The Pendubot can also be used in 
Robotics classes to illustrate and study kinematics (forward and inverse), 
robot dynamics, control of robots (position, velocity and force), and under-
actuated robotic mechanisms. 

The Penclubot consists of two rigid aluminum links, with the first link di-
rectly coupled to the shaft of a 90V pennanent magnet DC motor mounted 
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to a base. The motor mount and bearings are thus the support for the entire 
system. Link 1 also includes the bearing housing for joint two. Needle roller 
bearings riding on a ground shaft are used to construct the revolute joint 
for link 2. The shaft extends out both directions of the housing, allowing 
coupling to the second link and to an optical encoder mounted on link 1. 
The design gives both links full the 360 degrees of rotational motion. Two 
high-resolution optical encoders provide position information for feedback. 
One encoder is attached to the second joint and the other is attached to 
the motor. An advanced motion control 25A8 PWM servo amplifier is used 
to drive the motor. 

1.10 Book Outline 
This book is organized into nine chapters. Chapter 1 introduces the 

concepts of control systems, discusses examples of control systems, and 
thus provides the motivation for the material covered in the book. In order 
to control a plant (or process), a mathematical model (description) of the 
plant is required. Chapter 2 develops different techniques of obtaining and 
expressing mathematical descriptions for various physical systems, which 
include mechanical, electrical, electromechanical, thermal, chemical, and 
hydraulic systems. A system is any collection of interacting elements for 
which there are cause-and-effect relationships among the variables. The 
activity of mathematically capturing the behavior of physical systems is 
called system modeling. The chapter concentrates on dynamic systems, 
that is, systems whose variables are time-dependent. In most of the cases 
considered, not only will the excitations and responses vary with time but 
at any instant the derivatives of one or more variables will depend on the 
values of the system variables at that instant. Four forms of dynamic system 
models are presented, the state-va·riable form, the input-output differential 
equation form, the transfer function form, and the block diagram form. 
Methods for approximating a nonlinear system by a linear time-invariant 
model are developed. For time-varying or nonlinear systems that cannot be 
approximated by a linear and time-invariant model, computer solutions are 
employed. Derivation of models, conversion between models and analysis 
of models using MA'I'LAB are presented. 

Chapter 3 develops techniques for finding system responses for the dy-
namic systems modeled in Chapter 2. This activity is also called solving 
the model and involves using the mathematical model to determine certain 
features of the system cause-and-effect relationships. In order to design a 
control system, it is essential that the behavior of the plant (or process) is 
analyzed and understood. Three main mathematical approaches are used 



Introduction to Control Systems 43 

to obtain the system response: Direct solution of differential equations in 
the time domain, the use of the Laplace transform to solve differential equa-
tions in the frequency domain, and the deduction of system behavior from 
the system transfer function. Computer generation and analysis of system 
response using MATLAB are presented. The use of numerical methods, 
experimental time response data, and frequency-response data, instead of 
using analytical methods to determine the system response in circumstances 
where these methods are more feasible, are explored. 

Chapter 4 introduces, develops, and analyzes the principles of feedback 
control systems and illustrates their characteristics and advantages. In sev-
eral applications, there is a need to have automatic regulation and tracking. 
Quantities such as pressure, temperature, velocity, thickness, torque, and 
acceleration have to be maintained at desired levels. Feedback control is a 
convenient way in which these tasks can be accomplished. Two case stud-
ies, the cruise control system and the DC motor (both position and speed) 
control system are used as illustrative running examples throughout the 
chapter. The different types of controllers: Proportional (P), Proportional 
and Integral (PI), Proportional and Derivative (PD), Proportional and In-
tegral and Derivative (PID) arc discussed, together with their advantages 
and disadvantages. The concepts of system errors, tracking, disturbance 
rejection, and system type are covered. The notions of sensitivity, bounded 
input-bounded output (BIBO) stability, asymptotic internal stability, and 
Routh-Hurwitz stability are discussed and illustrated ,using examples. 

Chapter 5 deals with the root locus design techniques, explains the 
procedure of creating root loci and outlines their uses. Definitions of the 
necessary terms are provided, including a step-by-step guide to constructing 
a root locus, and details of how to design and evaluate controllers using the 
root locus method. Given a feedback control system, the root locus illus-
trates how the poles of the closed-loop system vary with system parameters, 
in particular the closed-loop gain. Root locus is a powerful graphic method 
for analysis and design of control systems. Although this method is com-
monly used to study the effect of control gain variations, it can also be used 
to plot the roots of any polynomial expressed in the Evans root locus form. 
Most control systems work by regulating the system they are controlling 
around a desired operating point, The root locus method helps the designer 
of a control system to understand the stability and robustness properties 
of the controller at an operating point. Material presented in this chapter 
enables the reader to create a root locus and use the locus to understand 
the closed-loop system behavior given an open-loop system and a feedback 
controller. Case studies and examples that illustrate how to use the root 
locus for designing a control system are presented. 

Chapter 6 seeks to investigate the steady state response of a dynamic 
system to sinusoidal inputs as the frequency varies. The design of feedback 
control systems in industry is accomplished by using frequency-response 
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methods more often than any other method. Frequency-response design is 
popular primarily because it provides good designs in the face of uncertainty 
in the plant model. For example, for systems with poorly known or chang-
ing high-frequency resonances, the feedback compensation can be modified 
to alleviate the effects of those uncertainties. This modification is carried 
out more easily using frequency-response design than any other method. 
Another advantage of using frequency-response is the ease with which ex-
perimental information can be used for design purposes. The frequency-
response design methods discussed in this chapter offer practical and impor-
tant altemative approaches to the analysis and design of contml systems. 
The main techniques covered include Bode plots, polar plots and Nyquist 
plots. The material presented empowers the reader with skills to hand draw 
these plots for a broad range of systems. Time-domain performance mea-
sures are developed in terms of the frequency response and then applied 
in system performance evaluation. These measures include gain margin, 
phase margin, and relative stability. The principles of compensation, lead 
and lag, are introduced and their applications discussed. 

Chapter 7 discusses state space methods of analysis and design. The 
thcoretical basics of the methods are discussed and followed by the actual 
methods. State space methods arc analysis and design methods that usc 
state variables, i.e., the analysis and the design are carried out in the state 
space. State space methods are somewhat simpler because they deal di-
rectly with the system states, which are first-order differential equations. 
Another advantage of these methods is their ability to handle multi-input 
multi-output (MIMO) systems. The chapter develops and demonstrates 
these advantages. The concepts of similarity transformations, observability 
and controllability, transfer function decomposition, and full state feedback 
control are discussed and illustrated using examples. Brief introductions to 
optimal control and estimator design are provided. 

Chapter 8 addresses the issues involved in the design, analysis, and 
implementation of digital controllers. The rationale for digitization and us-
ing digital control is presented. The objective is to design and implement 
digital conLrollers such that the digitization and discretization effects of 
continuous time analog signals are either eliminated or minimized. First, 
the general characteristics of sampled data systems are introduced, and 
then an analysis of discrete time systems is presented including stability, 
root locus and frequency response analysis. The design and implementation 
of discrete time controllers is then discussed in detail. In particular, the 
discrete proportional and integral and derivative (PID) controller is devel-
oped and appraised. An overview of the hardware, software, and system 
integration issues is outlined. 

In Chapter 9 advanced topics and issues involved in the design and 
analysis of control systems are addressed. In particular, the subjects of 
discrete time estimation (both state space and information space), optimal 
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stochastic control, and nonlinnar control systems arc presented. Adaptiw 
control systems and robust control are briefly introduced. Multisensor fu-
sion is the process by which information from a multitude of sensors is 
combined to yield a coherent description of the system under observation. 
General recursive estimation is presented and, in particular, the Kalman fil-
ter is discussed. A Bayesian approach to probabilistic information fusion 
is outlined and the notion and 1neasures of information are defined. This 
leads to the derivation of the algebraic equivalent of the Kalman filter, the 
(linear) Information filter. State et>timation for systems with nonlinearities 
is considered and the extended Kalman filter is treated. Linear information 
space is then extended to nonlinear information space by deriving the ex-
tended Information filter. The estimation techniques are then extended to 
LQG stochastic control problcrns, including systems involving noulineari-
ties, that the nonlinear stochastic: control This chapter also 
introduces the issues and concepts involved in the analysis and dec;ign of 
control systems for nonlinear dynamic systems. 

Appendix A contains summaries of the properties of Laplace and Z-
transforms, including tables of key transforms. In Appendix B the basic 
principles and syntax of MATLAB are introduced and illustrated. Sample 
laboratory exercises are also provided. 

1.11 Problems 

Problem 1 List the major advantages and disadvantages of closed-loop 
control systems with respect to open-loop systems. 

Problem 1.2 The st'udent-teacher learning pmcess is inherently a feedback 
pmcess 'intended to re&uce the system erToT to a minirnum. The desired 
outp1tl is knowledge being studied, and the student can be considered the 
pmcess. ConstTvct a feedback contml system block diagram and identify 
the control blocks (sensor, actuator, process, contToller, actual output, awl 
desired output) of the system. 

Problem 1.3 An enginecTing organizational system is composed of major 
groups such as managernent, research and development, preliminary design, 
expeT'iments. pmd1tct design and drafting, fabrication and assembling, and 
testing. These gnmps are inteT"connected to make up the whole opemt'ion. 

The system can be analyzed by reducing it to /.he most elementary set of 
components necessary that can pTuuide the analyt?:wJ detail requind, and 
by 7'epT'esenting the dynamic chamctcT"istics of each component by a set 
of simple equations. The dynamic pe·rjoT"mance of such a system can be 
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determined from the relationship between progressive accornplishment and 
time. 

Draw a functional block diagram showing an engineering organizational 
system. 

Problem 1.4 Many closed-loop and open-loop contml systems can be found 
in homes. 

(a) List six such examples (three open-loop and three closed-loop). 
(b) Construct feedback control system block diagrams for the six examples, 

and identify the control blocks (sensor, actuator, pmcess, controller, actual 
output, and desired output). 

Problem 1.5 Give two examples of feedback control systems in which a 
human acts as a controller. 

Problem 1.6 The following diagram depicts an automatic closed-loop sys-
tem joT paper moisture level control. 

De~ired +(\______\Controller ~---1 
mmsture~. . level c__ ___ _, 

Drier 

Moisture 
meter 

A Closed-Loop Control System for J'apeT Moisture 

(a) Explain how this control system works. 
(b) If the automatic controller is replaced by manual contml, explain how 

the new system will function. 
(c) Constmct a feedback control system block diagrarn and identify the 

control blocks (sensor, actuator, process, controller, actual output, and de-
sired output) of /he new system. 

Problem 1. 7 The following diagram depicts a closed-loop t.empemture con-
trol system. 

Desired 
temp. 

--- -------------
' ' 

: ~~Controller I ; ·I Compressor I , Heat flpw Room , "---./ - - - , dynanncs temp 

! -~ • n ·~~CtaJ;;~n~---~-!-------' 
' I snnp . , 
! Thermostat : 

I 
I_--------- ------------------ ------------ J 

Room Temperature Control Using a Thermostat 
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(a) Explain how this control system works. 
(b) If the automatic control is replaced by manual control, explain how 

the new system will function. 
(c) Construct a feedback contml syste·rn block diagram and identify the 

control blocks (sensor, actuator, process, controller, actual output, and de-
·sired output) of the system. 
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Chapter 2 

Modeling of Dynamic Systems 

2.1 Introduction 

In order to control a plant (or process), a mathematical model of the 
plant is required. This chapter develops different techniques of obtaining 
and expressing such mathematical descriptions for various physical systems, 
which include mechanical, electrical, electromechanical, thermal, chemical, 
and hydraulic A system is any collection of interacting elements 
for which there are cause-and-effect relationships among the variables. This 
definition is necessarily general, in order to encompass a broad range of sys-
tems. The most important feature of the definition is that it indicates that 
the interactions among the variables must be taken into account in syt>tcm 
modeling and analyt>is, rather than treating individual elements separately. 
A sy::;tem can also be understood as a set of physical components connected 
so as to form a whole entity that has properties that are not present in the 
separate components. The activity of capturing in mathematical terms the 
behavior of physical systems is called system modeling. 

This chapter concentrates on dynamic systems, that is, systems whose 
variables are time-dependent. In most of the cases considered, not only 
will the excitations and responses vary with time but at any instant the 
derivatives of one or more variables will depend on the values of the system 
variables at that instant. The basis for constructing a model of a system 
is rooted in physical laws such as conservation of energy, Newton's laws of 
motion and Kirchhoff's laws. These are the laws that the system elements 
and their interconnections are known to obey. The of model sought 
will depend on both the objective of the engineer and the tools for analysis. 
If a pencil-and-paper analysis with parameters expressed in literal rather 
than numerical form is to be performed, a relatively simple model will be 
needed. To achieve this simplicity, the engineer should be prepared to ne-
glect elements that do not play a dominant role in the system. On the other 
hand, if a computer is available for carrying out simulations of specific cases 
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with parameters expressed in numerical form, a comprehensive mathemat-
ical model that includes descriptions of both primary and secondary effects 
might be appropriate. The modeling is restricted to lumped, continuous, 
non-quantized systems that can be described by sets of ordinary differen-
tial equations because well developed analytical techniques are available 
for solving linear ordinary differential equations with constant coefficients. 
Most of the examples will involve systems that are both linear and time-
invariant. A method for approximating a nonlinear system by a linear 
time-invariant model will be developed. For time-varying or nonlinear sys-
tems that cannot be approximated by a linear and time-invariant model, 
one can resort to computer solutions. Four forms of dynamic system models 
are presented, the state-variable form, the input-output differential equation 
form, the tmnsfer function form and the block diagmm form. 

2.1.1 Chapter Objectives 

Upon completion of this chapter, the reader should be able to carry out 
the following tasks for a wide variety of dynamic systems such as mechanical 
(translational and rotational), electrical, thermal, chemical, and hydraulic 
systems: 

e From the mathematical description of the system, construct a sim-
plified version using idealized elements and define a suitable set of 
variables. 

• Use the appropriate element and interconnection laws to obtain a 
mathematical model generally consisting of ordinary differential 

equations. 

• If the model is nonlinear, determine the equilibrium conditions and, 
where appropriate, obtain a linearized model in terms of incremental 
variables. 

e Arrange the equations that make up the model in readily usable 
forms such as the state-variable form, input-output differential equa-
tion form, tmnsfer function form and the block diagmm. 

e Obtain system models from experimental data such as frequency re-
sponse, transient response and stochastic steady state data. 

011 Compare and contrast the different dynamic system model forms and 
be able to convert from one form to the other. 
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Dynamic Systems 

A dynamic system is a system whose variables are time-dependent, which 
means the inputs and outputs vary with time, and the derivatives of one 
or more variables will depend on the values of the system variables. There 
is a broad range of dynamic systems from different engineering disciplines. 
Such dynamic systems include the following: 

• Mechanical (translational and rotational) 

• Electrical 

• Electromechanical 

Mechatronic 

• Thermal and fluid 

• Hydraulic and pneumatic 

• Chemical and processing 

• Civil and structural 

• Manufacturing 

Although these dynamic systems come from a wide spectrum of engineer-
ing fields, their modeling follows the same principles. ·what is specific to 
each type are the dynamic elements, the element laws and interconnection 
laws. Also, certain forms of the mathematical models are more useful in 
certain fields than others. 

Dynamic System Models 
The activity of capturing in mathematical terms the behavior of physical 

systems is called system mathematical modeling. The basis for construct-
ing a system model consists of the physical laws, such as the conservation 
of energy, Newton's law and Kirchhoff's laws, which the system elements 
and their interconnections are known to obey. A dynamic system model is 
defined as the mathematical representation of the behavior of a dynamic 
system. The starting point in deriving such models is understanding the 
physics of the plant (the system being modeled), i.e., understanding what 
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the dynamic elements are, the laws that govern them, how they affect each 
other and how the dynamic behavior is physically accomplished. Once this 
is mastered, a simplified diagrammatic representation of the system is con-
structed using idealized elements. In this way, a complex dynamic system 
can be represented by a simplified (albeit approximate) mathematical de-
scription. The representation is further broken into free-body diagrams or 
circuits to which element laws and interconnection laws are applied. The 
differentia I equations are then established using dynamic system laws such 
as Newton's laws (balance of forces or torques), Kirchhoff's current law 
(KCL) and Kirchhoff's voltage law (KVL) on the free-body diagrams and 
circuits. 

2.3.1 Modeling Concepts 

The issues involved in developing dynamic system models can be grouped 
as follows: 

0 Elements 

• Element laws 

• Interconnection laws 

• Inputs and outputs 

~ State variables 

e :Free-body diagrams 

• System model 

2.4 Su.rnmary of the Model Derivation Procedure 

The procedure of deriving models is similar for the different dynamic 
systems, and can be summarized as follows: 

"' Understand the physics and interaction of the elements of the dynamic 
system. 

• Construct a simplified diagrammatic representation of the system us-
ing idealized elements. 

e Apply element laws and interconnection laws. 

o Draw the free-body or circuit diagrams. 
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e Identify or define the state variables, inputs, and outputs. 

"' Establish the system equations by using dynamic system laws such 
as D'Alembert's law, KCL and KVL. 

• Obtain the desired form of the system model by manipulating the 
equations. 

• If the model is nonlinear, determine the equilibrium conditions and 
obtain a linearized model. 

2.4.1 Forms of the Dynamic System Model 

There are several ways of expressing the differential equations that de-
scribe the dynamic behavior of a t:ystem. Put differently, the mathematical 
representation of a dynamic system can take different forms. The form of 
the dynamic system model employed depends on both the objective of the 
modeling and the available tools for analysis. Also, certain forms are more 
useful or practical for particular types of dynamic systems than others. 
There are four general forms of dynamic system models discussed in this 
book: 

• State-variable matrix form 

• Input-output differential equation form 

• Transfer function form 

• Block diagram form 

2.5 Overview of Different Dynamic Systems 

In this section an overview of different dynamic systems is carried out. 
The motivation is to identify the physical elements involved, the element 
laws, the interconnection lmvs, and the typical state variables in these sys-
tems. The following types of systems are outlined and reviewed: translation 
mechanical, rotational mechanical, electrical, electromechanical, hydraulic 
(fluid), and thermal systems. 

2.5.1 Translational Mechanical Systems 

In this section the variables, element laws, and interconnection laws for 
linear (translational mechanical) dynamic systems are presented. Transla-
tional systems are systems that can have only horizontal or/ and vertical 
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motion. For masses that can move vertically, the gravitational forces must 
be considered. Either force or displacement inputs can be applied to any 
part of the system. An applied force is a known function of time, but the 
motion of the body to which it is applied is not known at the beginning of a 
problem. Conversely, a displacement input moves some part of the system 
with a specified motion, but the force exerted by the external mechanism 
moving that part is normally not known. Displacements can be measured 
with respect to fixed reference positions or with respect to some other mov-
ing body. ~When relative displacements are used, it is important to keep in 
mind that the inertial force of a mass is always proportional to its absolute 
acceleration, not to its relative acceleration. To model a system, free- body 
diagrarns are drawn, and the forces acting on every mass and junction point 
who::;e motion is unknown are summed up. The free-body diagram for a 
massless junction is drawn in the usual way, except that there is 110 inertial 
force [5]. 

The modeling issues specific to the modeling of translational systems 
are presented in this section. After introducing the variables to be used, 
the laws for the individual elements are presented in addition to the laws 
governing the interconnections of the elements. Next, the use of free-body 
diagrams as an aid in formulating the equations of the model is presented. 
Inputs consist of either the application of a known external force or the 
movement of a body with a known displacement. If the system contains an 
ideal pulley, then some parts can move horizontally and other parts verti-
cally. Special situations, such as free-body diagrams for massless junctions 
and rules for the series or parallel combination of similar elements arc also 
treated. 

The modeling process can sometimes be simplified by replacing a series-
parallel combination of stiffness or friction element by a single equivalent 
element. Special attention is given to linear systems that involve vertical 
motion. If displacements are measured from positions where the springs are 
neither stretched nor compressed, the gravitational forces must be included 
in the free-body diagrams for any masses that can move vertically. 

2.5.1.1 State Variables 

State variables of translational mechanical systems are the displacement 
x(t), measured in meters (m), the velocity v(t), which is measured in meters 
per second (Tn/s), the acceleration a(t), measured in meters per second per 
second (m/s2 ), and the force f(t) which is measured in newtons (N). 

dx 
v = dt. 

dv d2 x 
a= dt = dt 2 · 
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In addition to the variables mentioned above, the energy w in joules ( J) 
and power p in watts ( w) are also defined variables. 

p = fv. 
dw 

p= di" 
The energy supplied between time t0 to t 1 is given by 

and total energy supplied is obtained from 

w(t) = w(to) + lt p(T)dT, 
to 

where w(to) is the energy supplied up to time to. 

2.5.1.2 Element and Interconnection Laws 

The system model must incorporate both the element laws and the inter-
connection laws. The element laws involve displacements, velocities, and 
accelerations. Since the acceleration of a point is the derivative of the ve-
locity, which in turn is the derivative of the displacement, all the element 
laws can be written in terms of x and its derivatives or in terms of x(t), 
v(t), and a(t). It is important to indicate the assumed positive directions 
for displacements, velocities, and accelerations. The assumed positive di-
rections for a(t), v(t), and x(t) will always be chosen to be the same, so it 
will not be necessary to indicate all three positive directions on the dia-
gram. In this book, dots over the variables are used to denote derivatives 
with respect to time. For example, 

dx . 
-=x dt (2.1) 

d 
dt (mv) =f. (2.2) 

Equation 2.2 is Newton's second law and for a constant mass system it 
becomes, 

dv m-=f. dt 
The kinetic energy and the potential energy are given by 

1 2 
wk = 2mv 
Wp = mgh. 

(2.3) 
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D'Alembert's law, which will be formally developed later for both trans-
lational and rotational systems, is a special form of Newton's second law 

where an inertial force is defined as -m ~~ such that 

n dv 
LUext)i- m dt = 0, 
i=l 

(2.4) 

where !ext is an external force acting on the mass m. D'Alembert's law 
is applied to each mass or junction point whose velocity or acceleration is 
unknown beforehand. To do so, it is useful to draw a free-body diagram for 
each such mass or point, showing all external forces and the inertial force 
by arrows that define their positive senses. The element laws are used to 
express all forces except inputs in terms of displacements, velocities, and 
accelerations. 

2.5.1.3 Friction 

vVhen two bodies slide over each other there is a frictional force iJ ( t) 
between them that is a function of the relative velocity ~v between the 
sliding surfaces. 

fJ = b~v 
= b(v2- vl), (2.5) 

where b is the friction coustant. A friction force that obeys such a linear 
relationship is modeled using viscous friction. The direction of the fric-
tional force is such that it is in the opposite direction to the sliding motion. 
However, friction can be used to transmit motion from one moving mass to 
another mass with which it is in contact. 

-vz -vz 

m m 

u () 

I I 
(a) 

Sliding Bodies (a) with Friction (b) with Negligible Friction 
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Viscous fluid 

A Dashpot: Modeling Viscous Friction 

Force Transmitted in a Dashpot 

The viscous friction described by Equation 2.5 is a linear element, for 
which the plot of f vs. t..v is a straight line passing through the origin, as 
shown in (a) in the following figure. In the same figure, (b) and (c) show 
examples of friction that obey nonlinear relationships: dry friction and drag 
friction, respectively. 

1 - Slope=b 

/j.y 

f 
A 

-A 

Friction Characteristics: (a) Linear, (b) Dry and (c) Drag 

Dry friction is modeled by a force that is independent of the magnitude 
of the relative velocity, but dependent on the direction (sign) of the relative 
speed. Drag friction is caused by resistance to a body moving through a 
fluid such as wind resistance. 

2.5.1.4 Spring Stiffness 

When a mcdwnical element is subjected to a force f and goes through 
a change in length .6.x, it can be characterized by a stiffness element. A 
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common stiflness element is the spring and its characteristics shown in the 
following figure. 

f X 

Characteristics of a Spring 

For a linear spring, the force is given by 

f = k!::lx 
= k(x2 - xr), 

and the potential energy stored in the spring is 

~I 
- -----'060"---
f 1-~1 f 

d0+(xz-xJ 

A spring (stiffness) element is assumed to be massless. When a force f is 
applied to one side of a spring a force equal in magnitude but of opposite 
direction must be experienced on the other side. Thus, for the following 
figure the force f passes through the first spring and is exerted directly on 
the mass rn. 

k 
-~- m f 

Force Transmitted Through a Spring 

2.5.1.5 Interconnection Laws: D'Alembert's law 

D'Alemhert's law is developed from Newton's law for translational sys-
tems as follows: 

(2.6) 
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where !ext is an external force acting on a mass m moving with linear 
dv 

velocity v(t). The term -m dt is called the inertial force and is always in 

the opposite direction to the direction of the mass's motion (the mass's 
displacement, velocity or acceleration). It follows that 

n dv 
2)fext)i - m dt = 0 
i=l 

n 

(2.7) 

This means that the sum of all the forces acting on a mass, including the 
inertial force, is zero. This is D'Alembert's law for translational mechanical 
systems. 

2.5.1.6 The Law of Reaction Forces 

In order to relate the forces exerted by the elements of friction and stiff-
ness to the forces acting on a mass or junction point, Newton's third law of 
reaction forces is required. It states that for every force of an element on 
another, there is an equal and opposite reaction force on the first element. 
This is illustrated in the following diagram. 

777 /77 
(a) 

(b) 
Reaction Forces 

2.5.1. 7 Series and Parallel Combination 

Springs and dashpots can be placed in series or parallel. The following 
diagrams show two springs and two dashpots in series and parallel, respec-
tively. 
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(a) (b) 
Series Combinations 

(a) (b) 
Parallel Combinations 

The equivalent stiffness for a parallel combination of springs is given by 

keq = k1 + k2. 

For a series combination it is given by 

k - klk2 
eq- kl + k2 

For dashpot, the equivalent damping factor for a parallel combination is 

beq = b1 + b2 

and for a series combination it is 

blb2 
beq = b1 + b2. 

Derivation of the these equations is left as an exercise for the reader. It 
is interesting to note that the equations are opposite to those of electrical 
resistors in the same configuration. 

Series and parallel combinations can be mixed in the same configuration 
as shown in the following figure. 

(a) (b) 
Mixture of Parallel and Series Combinations 
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The equivalent damping factor for configuration (a) is given by 

l - bl ( b2 + b3) 
Jeq - b1 + ( b2 + b3) ' 

while that for configuration (b) is given by 

2.5.2 Rotational Mechanical Systems 

Rotational mechanical systems are modeled using the same techniques as 
those for translational mechanical systems. The starting point is to intro-
duce the three rotational elements that are analogs of mass, friction, and 
stiffness in translational systems. Two other elements, levers and gears, 
are characterized in a somewhat different way. The use of interconnection 
laws and free-body diagrams is very similar to their use for translational 
systems. All the four types of models: state-variable matrix form, output-
input equation, transfer function, and block diagram are developed for rota-
tional mechanical systems. Combined translational and rotational ::>ystems 
are also considered. 

2.5.2.1 State Variables 

For rotational mechanical systems, the symbols used for the variables 
are angular displacement B(t) measured in radians (rad), angular velocity 
w(t) measured in radians per second (radjs), angular acceleration a(t) 
measured in radians per second squared (radj s2 ), and torque T(t) measured 
in Newton-meters (N.m). 

w=iJ 
a= w =e. 

The power supplied to the rotating body is 

p=Tw, 

and the energy supplied up to time t is 

w(t) = w(to) + r p(T)dT. 
}to 

2.5.2.2 Element and Interconnection Laws 

The elements used to represent physical devices in rotational systems are 
moment of inertia, friction, stiffness, levers, and gears. Consideration is 
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restricted to elements that rotate about fixed axes in an inertial reference 
frame. 

The moment of inertia is given by 

J =.I r 2dm. 

where r is the dititance from the axis of reference and elm is the mass of the 
small element. 

d 
dt (Jw) = T 

Jw =T 

Parallel axis theorem states that 

where a is the distance between the parallel axes and J0 is the moment of 
inertia about the first (principal) axis. 

2.5.2.3 Friction 

A rotational friction element is one for which there is an algebraic re-
lationship between the torque and the relative angular velocity between 
surfaces. Rotational viscous friction arises when two rotating bodies are 
separated by a film of oil. For a linear element, the curve must be a straight 
line passing through the origin. The power supplied to the friction element, 
is immediately lost to the mechanical system in the form of heat. The torque 
is proportional to the relative angular velocities as given by 

T = b6.w 
= b(w2- wl). 

2.5.2.4 Stiffness 

Rotational stiffness is usually associated with a torsional spring, such 
as the main spring of a clock, or with a relatively thin shaft. It is an 
element for which there is an algebraic relationship between T(t) and B, 
and it is generally represented as shown in the following diagram. Since 
it is assumed that the moment of inertia of a stiffness element is either 
negligible or represented by a separate element, the torques exerted on the 
two ends of a stiffness element must be equal in magnitude and oppo0ite in 
direction. For a linear torsional spring or flexible shaft, 

T = k6.B. 
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T 

T 
(a) 

Rotational Stiffness 

Potential energy is stored in a twisted stiffness element and is given by 
(for a linear spring or shaft), 

where tJ(t) is the angular displacement. 

2.5.2.5 The Lever 

The Ideal Lever 

An ideal lever is assumed to be a rigid bar that is pivoted at a point. 
and has negligible mass, friction, momentum, and stored energy. ln all the 
examples considered the pivot point is fixed. For small displacements 

By differentiating this equation the velocity is obtained 
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By taking moments about the pivot it follows that 

hd2- hd1 = 0 

h =(~~)]I. 

2.5.2.6 Gears 

An ideal gear has no moment of inertia, no stored energy, no friction, 
and il perfect meshing of the teeth. Any inertia or friction in an 
actual pair of gearc; can be represented by separate lumped elements in 
the free-body diagrams. The relative sizes of the two gears rcsnlt in a 
proportionality constant for the angular displacements, angular velocities, 
and transmitted torques of the respective shafts. For purposes of analysis, 
it is convenient to visualize the pair of ideal gears as two circles that are 
tangent at the contact point and rotate without slipping. The spacing 
between teeth must be equal for each gear in a pair, so the radii of the 
gears are proportional to the number of teeth. Thus if 'T' and n denote the 
radius and number of teeth, respectively, then a gear ratio N is defined as 
follows: 

N = 'T'2 = n2 
'T'1 n1 

7'101 = 7'202 

e1 = 'T'2 = N 
e2 'T'1 ' 

where fJ 1 and 82 are the angular displacements for the gears. Diffcrcmiating 
the above equation leads to 

Wl = T2 = N 
w2 T1 

T2 T2 
- = -- = -N 
T1 1·1 

T1w1 + T2w2 = 0. 

2.5.2. 7 Interconnection Laws 

The interconnection laws for rotational systems involve law'i for torques 
and angular displacements that are analogous to those for translational 
mechanical systems. The law governing reaction torque::; has an important 
modification when c:mnpared with the one governing reaction forces. 
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2.5.2.8 D'Alembert's Law 

The D' Alembert's law i;,; developed from Newton's law for rotational sys-
tems as follows: 

where Text is an external torque acting on a body with constant moment 
of inertia J and rotating with angular velocity w(t) about a fixed axis. 

The term -Jdw is called the inerl·ial torque and is always in the opposite 
dt 

direction to the direction of motion of the body. It follows that 

n 

(2.9) 

This means that the sum of torques acting on a body, includi11g the inertial 
torque, is zero. This is D'Alembert's law for rotational mechanical systems. 

2.5.2.9 The Law of Reaction Torques 

For bodies that are rotating about the same axis, any torque exerted 
by one element on another is accompanied by a reaction torque of equal 
magnitude and opposite direction on the first element. 

2.5.2.10 Obtaining the System Model 

The methods for using the element and interconnection laws to develop 
an appropriate mathematical model for a. rotational system are the same 
as those discussed for translational mechanical systems. For each mass or 
junction point whose motion is unknown a pr-iori, a free-body diagram is 
normally drawn showing all torques, including the inertial torque. All the 
torques except inputs are expressed in terms of angular displacements, ve-
locities, or accelerations by means of the element laws. Then D' Alembert's 
law is applied. The state-variable matrix system is established, as will be 
discussed later. 

2.5.3 Electrical Systems 

Except at quite high frequencies, an interconnection of lumped elements 
and a very important portion of the applications of electrical phenomena 
can model a circuit by using ordinary differential equations and applying 
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solution techniques discussed in this book. In this section, linear time-
invariant circuits are considered using the same approach used for mechan-
ical systems. The elements and interconnection laws are introduced and 
then combined to develop procedures for establishing the system model for 
a circuit. 

2.5.3.1 State Variables 

The variables most commonly used to describe the behavior of circuits 
are v(L) voltage in volts (V) and current i(t) in amperes (A). The related 
variable q( t), charge in coulombs (C) is defined from 

. dq 
2 = dt 

and 

q(t) = q(to) +it i(T)dT. 
to 

2.5.3.2 Element and Interconnection Laws 

The elements in electrical circuits that will be considered include resis-
tors, capacitors, inductors, and sources (both current and voltage). The 
first three of these are referred to as passive elements because, although 
they can store or dissipate energy that is present in the circuit, they cannot 
introduce additional energy. They are analogous to the dashpot, mass, and 
spring for mechanical systems. In contrast, sources are active clements that 
can introduce energy into the circuit and that serve as the inputs. They 
are analogous to the force or displacement inputs for mechanical sy::Jtems. 

+ v 

~2 
i 

Denoting Circuit Voltages 

v 
+ -
~v2 

1 

A Resistor and its Variables 

2.5.::L3 Resistor 

A resistor is an element for which there is an algebraic relationship be-
tween Lhc voltage across its terminals and the current through it, Lhat an 
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element that can be described by a curve of v(t) vs. i(t). A linear resistor 
is one for which the voltage and current are directly proportional to each 
other, that is, one described by Ohm's law: 

2.5.3.4 Capacitor 

v = Ri 
. 1 
t = Rv. 

A capacitor is an element that obeys an algebraic: relationship between 
the voltage and Lhe charge, where the charge is the integral of the current. 
The energy stored in the capacitor is a function of the voltage across its ter-
minals and the characteristics of the capacitor are defined by the following 
equations: 

q = Cv 

i = cdv 
dt 

v(t) = v(t0) + ~ lt i(T)dT. 
to 

The energy stored is given by 

The following diagram shows the symbols of a capacitor and inductor. 

(a) 

Symbols of a Capacitor and an Inductor 

2.5.3.5 Inductor 

An inductor is an element for which there is an algebraic n:lationship be-
tween the voltage across its terminals and the derivative of the flux linkage. 
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The energy stored is a function of current. 

d 0 

v = dt (Lz) 

di v=L-dt 

i(t) = i(!.u) +±it v(T)rlT 
to 

W- ~Li2 -2 0 

To obtain the model of a circuit in state-variable form, an appropriate 
set of state variables is defined and then an equation for the derivative of 
each state variable in terms of only the state variables and inputs is derived. 
The choice of state variables is not unique, but they are normally related 
to the energy in each of the circuit energy-storing elements. Kirchhoff's 
voltage law (KVL) and Kirchhoff's current law (KCL) arc used to obtain 
the circuit equations. All the techniques that have been discussed can still 
be used. The only basic difference is that the objcci.ive is to retain the 
variables vc(t) and iL(t) wherever they appear in the equations and to 
express other variables in terllls of them. 

2.5.3.6 Amplifiers and Controlled Sources 

Some important types of electrical elements, unlike those in earlier sec-
tions, have more than two terminals to which external connection;; can be 
made. Controlled sources are considered in this section, and the frequently 
used operational amplifier receives special attention. Controlled sources 
arise in the models of transiBtors and other electronic devices. Rather than 
being independently specified, the values of such sources are proportional 
to the voltage or current somewhere else in the circuit. One purpose for 
which such devices are used is to amplify electrical signals, giving them 
sufficient power [5]. For example, to drive loud-speakers, instrumentation, 
or various electromechanical systems. 

Ideal voltage and current amplifiers are shown in Figure 2.1 (a) and (b) 
[5]. The models for many common devices have two bottom terminals 
connected together. They may also include the added resistors shown in 
Figure 2.1 (c) and (d). For (c) to approach (a), Rn must be very large and 
Ra very small. In order for (d) to approach (b), Rn must be very small and 
Ra very large, 



Modeling of Dynamic Systems 

+ 

v. (t) 
1 

(a) 

(c) 

FIGURE 2.1 

1 . 
1 

JcE 
(b) 

i. (t) 
1 -

(d) 
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(a), (b) Ideal Voltage and Current Amplifiers. (c), (d) Amplifiers 
with Internal Resistance Causing Non-ideal Behavior. 

Example 2.1 Find the relationship between the input voltage vi(t) and the 
output voltage V 0 (t) in the following op-amp ciTcviL 

R2 

+ + 
y V0 =AvA 

l 

AmplijieT CiTcuit 

Solution 2.1 Summing up the curTent at node ;1 gives 

1 1 
Rl [vA- vi(t)] + R2 (vA- v0 ) = 0 
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Since V0 =AvA it follows that 

(~+~-~)VA= ~Vi(t). R1 R2 R2 R1 

Multiplying both sides of this equation by R 1R 2 , solving for VA, and then 
setting V0 = AvA leads to 

Note that for veTy large values of A, 

R2 
Vo =- Rt v;(l;). 

Under these conditions, the size of the voltage gain is determined solely by 
the ratio of the resistors. 

Example 2.2 Find the relaUonship between the input voltage vi(t) and the 
output voltage va(t) for the following op-amp circuit. 

R 

~ A 

+ + + 

Amplifier Circuit 

Solution 2.2 Svmming the currents at node A gives 

Since V 0 = VA can be replaced by V0 / A to give 
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Dividing both sides of the equation by C and rea1'mnging terms, the inpu.l-
o·utput differential equation is obtained. 

F'oT very lurge ·ualues of this Teduccs to 

va =-(;c) vi(t), 

If theTe is no initial stoTcd energy, then V 0 (0) = 0, and 

1 It Va = --0 vi(>..)d>... 
R •. o 

The circuit is then called an integm.l.oT, because its output is proportional 
to the integral of the input. 

2.5.3.7 The Operational Amplifier 

The operational amplifier (often called an op-amp) is a particularly im-
portant building block iri the electrical part of many modern systems. The 
device typically contains more than 20 transistors plus a number of resis-
tors and capacitors, and it may have 10 or more external terminals [5]. 
However, its basic behavior is reasonably simple. There arc two input ter-
minals for time-varying signals and one output terminal. The symbol for 
the device and its equivalent circuits are shown in Figure 2.2. Complete 
physical descriptions can be found in electronics books and other textbooks 
[5], [7]. For an ideal op-amp, no current flows into the input terminals, but 
the output current is unknown. The op-amp gain is usually large enough 
so that the voltage between the two input terminals can be assumed to be 
zero. 

The input terminals marked with the minus and plus signs are called 
the inverting and non-inverting terminals, respectively. The voltages are 
denoted with respect to the ground (which is at zero-volt reference) by 
VA and VB· One of the input termina.ls is often connected to the ground 
point, but tliis is not necessary. Typical values of rn exceed 106 D, and 
T 0 is normally less than 100D. In most applications, the resistance Tn 

can be replaced by an open circuit, and T a hy a short circuit, leading to 
the simplified model as shown. Then no current can flow into the device 
from the left, and the output voltage is V 0 = A(·u4- vn). The voltage 
arnplification iCl extremely large, typically exceeding 105 . 

Note that the symbol in Figure 2.2 (a) does not show the ground point. 
In fact, the device itself does not have an external circuit that can be con-
nected directly to ground. There are, however, terminals for the attachment 
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(a) (b) 

(c) 

FIGURE 2.2 
Operational Amplifier: (a) Schematic Diagram (b) Equivalent 
Circuit (c) Idealized Equivalent Circuit 

of positive and negative bias voltages. The other ends of these constant volt-
ages are connected to a common junction, which is the ground point that 
appears in (b) and (c) of the figure. Circuit diagrams involving op-amps 
must always show which of the other elements are connected to this exter-
nal ground. Sometimes ground symbols appear in several different places 
on the diagram, in which case they all can be connected together. However, 
the diagrams for our examples will already have had this done. Because 
our interest is in the time-varying signals, the constant bias voltages are 
not normally shown on the circuit diagram. 

Example 2.3 Find the relationship between the input voltage vi(t) and the 
output voltage v0 (t) for the circuit shown in the following diagram. 
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+ 
v. (t) 

I 

Op-Arnp Circuit 

Solution 2.3 With the op-amp replaced by the ideal model, the circuits 
are equivalent to those done earlier except that V 0 = -AvA rather than 
V 0 = AvA. The results are the same except that A is replaced by -A. 

which for very large values of A becomes 

R2 
V0 =- Rl Vi(t). 

Example 2.4 Find the relationship between the input voltage vi(t) and the 
output voltage v0 (t) for the circuit in the following diagram 

c 

R 

+ 
v.(t) 

I 

Op-Amp Circuit 
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Solution 2.4 The problem is solved using similar approach. 

(1 + ~) V0 + A~Cvo =- R~vi(t), 
which for large values of A becomes 

. 1 
V0 = - RC Vi(t). 

Example 2.5 Find an expression for the relationship between the input 
voltage v;(t) and the output voltage u0 (t) for the circuit shown in the next 
diagmrn. 

.---t-- + 
+ 

v.(t) 
1 

Op-Amp Circuit 

Solution 2.5 Since there is no current flowing into the terminals of the 
op-amp, the voltage divider rule can be used, 

R1 

It then follows that 

( AR1 ) V0 = A[vi(t)- VA] = Avi(t)- R Va, 
R1 + 2 

from which 

( 
R1 + Rz ) ( ·) Vo 1 Vi i . 

R1 + A (R1 + Rz) 

For vcTy laTge values of A the Tesult becomes 

V 0 = ( 1 + ~:) Vi(t). 
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In the foregoing examples, note how the elements connected around the 
op-amp completely determine the behavior when the model with A -7 oo is 
used to get a simpler expression. Since A is so large in practice, an easier 
method is often used to get the simpler expression directly. The output 
voltage of the device, given by V 0 = A( v A - v B), must be finite, so that the 
voltage VA- VB between the input terminals must approach zero when A 
is very large. In practice, this voltage really is a tiny fraction of one volt, 
such as O.lmV. 

Assuming that the voltage difference ( v A - v B) is virtually zero, it is 
sometimes called the virtual-short concept, because the voltage across a 
short circuit is zero [5]. However, unlike a physical short circuit represented 
by an ideal wire (through which current could flow), it must be still assumed 
that no current flowt> into either of the input terminals. These two principles 
can be t>ummarized as follows: 

• Virtual short concept: v A - v B 
VA= VB= 0. 

• No current flows into the op-amp. 

0, and if VB is grounded then 

Example 2.6 Use the virtual-short concept to determine the relationship 
between the input voltage Vi ( t) and the output voltage V 0 ( t) for the circuit 
shown below, when A is very large. 

c 

+ 
v. (t) 

1 
>--.-1.---{) Vo 

Op-Amp Circuit: Virtual-Short Principle 

Solution 2.6 The solution proceeds by applying KCL at A and v,sing the 
two main principles associated with an op-amp: (1) no cwTent flow into 
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the op-amp terminals, and (2) virtual-short concept, VA =VB = 0. 

(no current flow into the op-amp terminals) 

Vi(t)- VA c· = vc R 

Vi ( t) - VA C ( . . ) R = VA- Vo 

vi(t) =-Ova (virtual-short concept, VA= 0) 
R 

This result is in agreement with the result from the earlier approach. 

Example 2. 7 Use the virtual-short concept to determine the relationship 
between the inpnt voltage Vi ( t) and the output volLage v0 ( t) for the circuit 
shown below, when A is very large. 

+ 
v.(t) 

I 

Op-Amp Circuit 

Solution 2. 7 As in the previous e:rample the solution proceeds by applying 
KCL at A while using two principles associated with an op-amp: (1) no 
current flow into the op-amp terminals, and (2) the virtual-short concept, 
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VA= VB= 0. 

Vi(t) -VA 
R1 

Vi(t) 
R1 

(no current flow into the op-amp terminals) 

(virtual-short concept, v A = 0) 

This result is in agreement with that from the earlier approach. 

2.5.4 Electromechanical Systems 

77 

A wide variety of very useful devices is produced by combining electrical 
and mechanical elements. Among the electromechanical devices that will 
be considered are potentiometers, galvanometers, microphones, accelerome-
ters, motors and generators. A detailed modeling process for the DC motor 
is presented in Chapter 4. A detailed example of an electromechanical sys-
tem will be presented later in the chapter. 

2.5.5 Pneumatic, Hydraulic and Fluid Systems 
.A hydraulic system is one in which liquids, generally considered incom-

pressible, flow. Hydraulic systems commonly appear in chemical processes, 
automatic control systems, actuators and drive motors for manufacturing 
equipment. Such systems are usually interconnected to mechanical systems 
through pumps, valves, and movable pistons. A turbine driven by water 
and used for driving an electric generator is an example of a system with 
interacting hydraulic, mechanical, and electrical elements. The more gen-
eral topic of fluid systems, which would include compressible fluids such 
as gases and air, will not be considered. An exact analysis of hydraulic 
systems is usually not feasible because of their distributed nature and the 
nonlinear character of the resistance to flow. For the dynamic analysis sat-
isfactory results can be obtained by using lumped elements and linearizing 
the resulting nonlinear mathematical models. On the other hand, the de-
sign of chemical processes requires a more exact analysis wherein static, 
rather than dynamic, models are used. In most cases, hydraulic systems 
operate with the variables remaining close to a specific operating point. 
Thus models involving incremental variables are of importance. This fact 
is particularly helpful because such models are usually linear, although the 
model in terms of the total variables may be quite nonlinear. The principles 
involved in modeling fluid systems are presented below. 



78 Design and Analysis of Control Systems 

An orifice i:i a restriction in a fluid flow passage as illustrated below. 

R 

Q 

The Orifice: A Rco-;trict.ion in a Fluid Flow Passage 

Such a restriction in the pipe preoents hydraulic resistance to the flow 
of the fluid. The terms p 1 (t) and p2 (t) represent the fluid pressure at the 
two ends (in Njm 2 or Pa), Q(t) is the fluid volumetric flow rate (in m 3 j s ), 
and R is the hydraulic resistance (in Nsjm 5 ). From experimental research 
it has been cstc1 blished that the flow rate and the pressure drop across the 
orifice are related by 

Q = kvz;:p where k is a constant 

and !lp = P1 - P2· 

Graphically, this information can be represented as follows: 

(j) 

~ .... 
~ 
0 

t;:l 

7 

6 

5 slope=l~,/ 

4 

Q3 

2 

4 6 8 

pressure difference 
Flow Rate vs. Change in Pressure 

lC 

Liquid storage exhibits hydraulic capacitance. Consider liquid stored in 
an open vessel of uniform cross-sectional area, /L The height of the liquid 
is h. Then the volume of liquid stored is given by 

V= Ah. 
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The pressure at the base of the vessel is given by 

P = pgh + Pu 
pg 

P = Av+pa, 
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where Pa is the atmospheric pressure. Graphically, this information can be 
displayed as follows: 

6 

5 

<l) 

~ 
4 

l:l.l 
3 l:l.l 

<l) 
1-o 
0.. 2 

Pa 1 

0 

slope=l/C 

0 4 

volume 
Pressure vs. Volume 

2 6 8 

C is the hydraulic capacitance of the vessel defined as the reciprocal of 
the pressure (p) vs. volume ( v) curve, that is 

C=~ 
pg 
l 

p= CV+Pa· 

c 

"V liquid surface 
/ 

~---------------P ______________ __ 
A Reservoir with an Inlet and an Outlet 

The rate of liquid storage is given by 

qs = ql- q2 

or v = ql- q2, 
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where v is the rate of change of volume. Hence, using the fact that 

it follows that 

. 1 . 
p = cv 

1 
= cqs. 

Example 2.8 Determine the equations that describe the height of the water 
in the tank shown below. 

I 
h 

1 

Water Tank 

Pressure 
pl 

A is the area of the tank, p is the density of the water, h = mj Ap 
represents the height of the water and m is the mass of water in the tank. 

Solution 2.8 Using the equations derived above, the solution is obtained 
as 

. 1 
h = Ap (win- 'Wout), 

where A is area of the tank, p is the density of water, h = mj Ap is the 
height of the water, and m is the mass of wateT in the tank 

Force equilibrium (balance of forces) applies to fluid flow systems as it 
does for mechanical systems. However, for fluid flow systems some forces 
may result from fluid pressure acting on a piston. The force f from the 
fluid is given by 

f=pA, 

where p is the fluid pressure and A is the area on which the fluid acts. 
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Example 2.9 Determine the differential equation that describes the mo-
tion of the hydmulic piston shown below where there is a force Fn acting 
on the piston, and the pressure in the chamber is p. 

1------ X----------n-1 Piston 

I 

Liquid at 
pressure p 

Hydraulic Piston 

---F D 

Solution 2.9 The fluid flow laws apply directly, where the forces include 
the fluid pressure as well as the applied force. Hence the result is 

mx = Ap-Fn, 

where A is the area of the piston, m is the mass of the piston, and x(t) is 
the position of the piston. 

For vessels with variable cross-sectional area, the pres;:;ure vs. volume 
curves are given below. 

p p 
;----

- 1 Slope--
Pa 

C(h) 
Pa 

----0 v 0 v 

(a) (b) 
Pressure vs. Volume: Variable Cross-sectional Area A(h) 
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Hence the hydraulic capacitance is given by 

C(h) = _1_ = dv 

(~~) dp 

dv dh 
dh dp 

A( h) 
pg 

(chain rule of differentiation) 

( dv dh 1 ) 
from dh = A(h) and dp = pg . 

From these equations, it can be deduced that for a vessel with constant 
area A the pressure equation reduces to 

pg 
p = A v + Pa, 

which is as expected from previous discussions. The pressure vs. volume 
curve is also familiar from previous discussions and is shown below. 

p 

Pa 

0 

Pg 1 
Slope=-=-

A C 

v 

Pressure vs. Volume: Constant Area A 

The hydraulic capacitance C is given by 

0=~. 
pg 

The general rate of change of pressure at the base of the vessel is derived 
as follows 

v(i) = v(O) +lot [win(A) - W 0 ut(A)]dJ\ 

V = Win(t)- Wout(t) 
. 1 
h = A(h) (L)- W01tt(t)] 

. 1 
P = C(h) [win(t)- Waut(t)]. 
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Fluid flows are common in many control systems components, one of 
the most common being the hydraulic actuators used to move the con-
trol surfaces on airplanes. The physical relations governing fluid flow are 
continuity, force equilibrium, and resistance. 

In many cases of fluid-flow problems the flow is restricted either by a 
constriction in the path or by friction. The general form of the effect of 
resistance is given by the mass flow rate. Flow rates in between these 
extremes can yield intermediate values. The Reynolds number indicates 
the relative importance of inertial forces and viscous forces in the flow. It 
is proportionnl to a material's velocity and density and to the si;ce of the 
restriction, and it is inversely proportional to the viscosity. 

The basic variables in a hydraulic system are the flow rate and pressure. 
Other variables that are equivalent to the pressure at the bottom of a con-
tainer are the volume of the liquid and the liquid's height. Since hydraulic 
systems are generally nonlinear, especially in the resistance to fluid flow, 
linearized models valid in the vicinity of an operating point are developed. 
Passive elements of hydraulic capacitance and hydraulic resistance are in-
troduced in constructing such models. The former is associated with the 
potential energy of a fluid in a vessel, the latter with the energy dissipated 
when fluid flows through valves, orifices, and pipes. 

2.5.6 Thermal Systems 

Thermodynamics, heat transfer, and fluid dynamics arc each subjects of 
complete textbooks. For purposes of generating dynamic models for use in 
control the most important aspect of the is to represent 
the dynamic interaction between the variables. Experiments are usually 
required to determine the actual values of the parameters and thus to com-
plete the dynamic: model for purposes of control systems Thermal 
systems are sysLems in which the storage and flow of heaL are involved. 
Their mathematical models arc based on the fundamental laws of ther-
modynamics. Examples of thermal systems include a thermometer, an 
automobile engine's cooling system, an oven, and a refrigerator. Generally 
thermal systems are distributed, and thus they obey partial rather than 
ordinary differential equations. In this book, attention will be restricted to 
lumped mathematical models by making approximations where necessary. 
The purpose is to obtain linear ordinary differential equations that are ca-
pable of describing the dynamic response to a good approximation. The 
principles involved in modeling thermal systems are outliued below. 

An Immlated Slab with Ends at Two Different Temperatures 
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The physical law for heat flow iu a conductor is the Fourier law 

where e i:o the temperature in Kelvins (K), q is the heat flow rate (Jjs), 
and R is the thermal resistance ( K /W). The temperatures and tlw heat 
flow may be time varying. 

The figure below shows the cross section of a perfectly insulated con-
ductor of mass m, which has a specific heat capacity c, and is initially at 
temperature el. 

oQ 

~~~-,Insulation 

A Perfectly Insulated Conductor 

The expression of the heat flow rate can be derived by considering a 
small quantity of heat 8Q being injected into the mass in order to raise the 
temperature to e2 : 

8Q = mc(fh - 82) 

dQ de 
- =TnC-
d/ dt 

q = c~~, 

where Cis the thermal capacity of the mass (C =me). 

Example 2.10 An electric oven has total mass m and initially its ambient 
temperature is 0 a. The input heaL flow rate is qi and the oven temperatv.re 
is e. There is heat loss through the walls of the oven which have thermal 
resistance R. A diagmm of the oven is shown below. 
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The terms q8 (t) and q0 (t) represent the rate of heat storage and the rate 
heat loss, respectively. Obtain the differential equation that describes the 
thermal behavior of the oven. 

Solution 2.10 The differential equation is obtained by first considering 
energy balance within the oven as follows: 

()- Ba 
qo=~ 

dB 
qs =me dt 

d() 1 1 
me dt + R() = qi + RBa. 

This is the differential equation relating B(t) to qi(t) and Ba· 

2.6 State-Variable Matrix Form 
This form of the dynamic system model is achieved by first considering 

the system equations, choosing variables of interest and identifying the 
inputs and outputs. The system is then modeled by finding equations of 
the derivatives of the variables in terms of the variables and the inputs 
[5]. The outputs are also expressed in terms of variables and inputs. The 
state-variable matrix form is then developed by pulling out the coefficients 
of the state variables and inputs in order to obtain the matrices A, B, C 
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and D such that 

Design and Analysis of Control Systems 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t), 

(2.10) 

(2.11) 

where x(t) is a vector of state variables, x(t) is a vector of the derivatives 
of the state variables, u(t) is a vector of inpms and y(t) is a vector of 
outputs. B, C and D are matrices of coefficient;,; of the state variables 
and inputs and the general matrix elements are represented by aij, bij, Cij 

and dij· For linear time-invariant systems the matrices A, B, C and Dare 
fixed, which means that their elements are constants. 

2.6.1 Choice of State Variables 

The procedure of formulating the state variablesystem model begins with 
the selection of a set of state variables. This set of variables must completely 
describe the effect of the past history of the system and its response in the 
future. Although the choice of state variables is not unique, the state 
variables for dynamic systerns are usually related to the energy stored in 
each of the system's energy-storing elements [G]. Since any energy that 
is initially stored in these element" can affect the response of the system 
at a later time, one state variable is normally associated with each of the 
independent energy storing elements. Hence, the number of independent 
state variables that can be chosen is equal to the number of independent 
energy storing elements in the system. The fact that the state variables 
are independent means it is impossible to express any state variable as an 
algebraic func:t ion of the remaining state variables and the inputs. A system 
with state variables chosen with this constraint is said to be minimal (or 
minimized) and the matrix A is full rank, and thus invertible. In some 
systems, the number of state variables is larger than the number of energy-
storing elements because a particular interconnection of elements causes 
redundant variables or because there is need for a state variable that is not 
related to the Oilorage of energy. The latter might occur when a particular 
variable or parameter in a system has to be monitored or controlled where 
this can only be achieved by using an extra state (redundant) variable. In 
such a state-variable matrix form the system is not minimal and matrix A 
is not full rank (i.e. not invertible). It is not possible to model a system 
using a fewer number of state variables than the number of independent 
energy storing clements in the system. 

Example 2.11 Two connected cars with an applied input force 'u(t) and 
negligible rolling friction can be represented by a translational mechanical 
system as shown below. 
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I a-- Xz 
' 

force 

Translational Mechanical System 

(a) Draw the free-body diagrams of this mechanical system. 

(b) Write down the differential equations that represent the system. 

(c) EJ:plain why the vecto1· of .state variable.s should be chosen as 

(d) Express these differential equations in the state-variable form, where 
the outp·ut is the frictional force in b 1• 

Solution 2.11 (a) The free-body diagrams for the translational mechanical 
system are drawn as shown below. 

Pree-Body D·iagram 

(b) Balancing the forces (D'Alembert's law) on the free-body diagrams of 
masses m 1 and m 2 , respectively, gives 

(2. 12) 

(c) There are four energy storing elements, two springs and two masses. 
The potential energy stored in a spring is a function of the displacement x(t) 
and the kinetic energy stored in a moving mass is a function of the velocity 
v(t) (wh·ich is equal to i:(t)). Hence, the state variables corresponding to the 
energy stoTing elements are given by 
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(d) The state-variable joTm is achieved by obtaining expressions of the 
derivatives of the8e variables in terms of the variables and the input. Two 
of these expressions are simple: 

The otheT two expressions, joT vl and v2, aTe obtained by rearranging Equa-
tions 2.12 and 2.13. 

m1:i1 + b1(±1- ±2) + k1(x1- x2) = u(t) 

m1v1 + b1(v1- v2) + k1(x1- x2) = u(t) 

. bl bl kl kl 
V1 = --Vl + -1!2 - -Xl + -X2 

m1 m1 m1 m1 

1 
+-u(t) 

m1 

m2:i2 + k2x2 + b2±2 = b1 (±1 - ±2) + k1 (x1 - x2) 

m2v2 + k2x2 + b2v2 = b1 ( v1 - v2) + k1 (x1 - x2) 

. bl ( bl b2 ) kl v2 = -v1 - - + - v 2 + -x1 -
m2 m2 m2 m2 

The results can be summarized as follows: 

X1 = V1 

. bl bl kl kl 1 
v1 = --.. -vl + -v2 - -x1 + -x2 + -u(t) 

m1 m1 m1 m1 m1 

The output, the frictional joTce in b1 , is given by 

y(t) = b1(v1- v2) 

= b1v1- b1v2. 

By extracting the coefficients of the variables and inputs, the state-variable 
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matrix system is obtained. 

0 1 0 0 
0 

kl bl kl bl 

r ~: 1 
m1 m1 m1 m1 n 1 

v1 + m1 u(t) 0 0 0 1 X2 

v2 0 
kl bl (kl + k2) (bl + b2) 
rn2 m2 m2 rn2 0 

y(t) [o b, o -b,] l~J + [o]u(t). 

2.6.2 State-Variable Form for Nonlinear Systems 

For linear time-invariant systems, all of the elements of A, B, C and 
D represented by aij, bij, Cij and dij (coefficients of state variables and 
inputs) are constants. For linear systems whose parameters vary with time, 
some of these elements are functions of time. For nonlinear elements, some 
of the coefficients arc functions of the state variables or inputs. Hence, in 
the general case of tin1e-varying, nonlinear systems, the right-hand side of 
the state variable and output equations are nonlinear functions of the state 
variables, the inputs, and time such that, 

x(t) = f(x, u, t) 

y(t) = g(x, u, t). 
(2.14) 

(2.15) 

This means that for nonlinear systems the matrices A, B, C and D cannot 
be extracted, and state-variable form takes the general structure shown in 
Equations 2.14 and 2.15. Two other situations where the matrices cannot 
be extracted occur when derivatives of two independent state variables 
appear in the same state-variable equation, and when derivatives of the 
inputs appear in the state-variable equation. \,Yhile these more general and 
more complicated systems are addressed in this chapter, emphasis is placed 
on linear time-invariant systems where the state-variable Jn<l.trices can be 
easily extracted. 

2.6.3 Characteristics of State-Variable Models 

One of the characteristics of state-variable models is that they are easily 
captured by matrix notation and are thus amenable to the techniques of 
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linear algebra. For example, any number of first-order state-variable equa-
tions can be represented by a single matrix differential equation merely 
by making the appropriate definitions. Furthermore, when one is dealing 
with complex multi-input, multi-output systems, using matrix concepts and 
properties leads to an understanding of system behavior that would be dif-
ficult to achieve otherwise. An additional advantage of using matrices is 
that one can apply many of the theoretical properties of matrices such as 
multiplication, evaluation of determinants, and inversion, to the study of 
dynamic: systems once their models have been put into matrix form. The 
state-variable matrix model is obtained by pulling out the coefficients of the 
state variables ancl the inputs to obtain the coefficient matrices A, C and 
D. These matrices can then be used in MATLAB (Appendix B) simulation 
to obtain the response and design controllers to control the system 
response. State-variable equations are particularly convenient for cornplex 
multi-input, multi-output systems. They are often written in matrix form, 
and, in addition to their computational advantages, they can be used to ob-
tain considerable insight into system behavior. The state variable concept 
has formed the basis for many of the theoretical developments in system 
analysis, in particular the state space methods discussed in Chapter 7. 

2.6.4 Summary of the State-Variable Form Modeling 

In the remainder of this section, a variety of examples illustrate the 
technique of deriving the mathematical model in state-variable form. The 
general approach employed in deriving the mathematical model in state-
variable matrix form can be summarized as follows: 

"' Clwose the state variables and identify the inputs and outputs. 

® Draw free-body diagrams or circuit diagrams for the clements. 

• Obtain a set of differential equations by using dynamic system laws 
(mechanical, electrical, chemical, hydraulic, etc.) 

• Manipulate the differential equations into state-variable form by ex-
pressing the derivative of each state variable as an algebraic function 
of the state variables and inputs. Take note of simple cases such as 
x = v where both x and v are state variables. 

the output variables as algebraic functions of the state vari-
ables and the inputs. 

Write the state variable and output equations in matrix form by 
pulling out the coefficients of the state variables and the inputs in 
order to obtain the matrices A,B,C and D. 
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2. 7 Input-Output Differential Equation Form 

This form of the dynamic model is developed by expressing the sys-
tem equations in terms of the inputs and the outputs, and their respective 
derivatives, while eliminating all other variables. This representation is 
thus in the form of input-output differential equations. For a system with 
one input u(t) and one output y(t), the output has the general form, 

f(y,y,y, ... ,y(n)) = f(u,u,u, ... ,u(m)) 

aoy + a1iJ + a2fj + ... + any(n) = bou + b1u + b2ii, + 
... + brn'IL(m)' (2.16) 

where 

' (n) - dlly and v(m) = dmu 
Y - dtn ' dtm. 

For linear and time-invariant systems all the coefficients in Equation 
2.16 are constants. Equation 2.17 shows a simple input-output differential 
equation with one input and one output 

3y+iJ+ = 4u + 7u. (2.17) 

For systems with more than one output, the right side of the input-output 
differential equation will include additional input terms. If there are several 
outputs, there is need for a separate but ::;imilar equation for each output. 
For example, the following pair of equations represent a system with two 
outputs and three inputs, 

3yl + iJ1 + 2yl = 4·ul + u2 + 7u3 

Y2 + Y2 + 2y2 = 4ul + 7u2 + u3. 

(2.18) 

(2.19) 

Assuming the form of the input(s) i::; known, in the general case, each of 
the input-output differential equations involves only one unknown variable 
and its derivatives. Thus, unlike state-variable equations, each equation 
can be solved independently of the others. An input-output differential 
equation can be obtained by combining the equations from a state-variable 
model or more directly from a free-body diagram or circuit by labeling the 
variables in terms of the input and output variables. 

2.7.1 Comparison with the State-Variable Form 

For a first-order system, both forms of the system model involve a single 
first-order differential equation and are essentially identical. For higher-
order '3ystems, they are quite different. A set of n first-order differential 
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equations in state-variable form must be solved for as a group, and the 
initial value of each state variable must be known in order to solve the set 
of n equations. An input-output differential equation of order n contains 
only one dependent variable, but there is need to know the initial values 
of that variable and its first ( n - 1) derivatives. In practice, finding the 
input-output differential equation and the associated initial conditions may 
require more effort than finding the information needed for a state variable 
solution. Using the staLe-variable equations has significant computational 
advantages when a computer solution is to be found. ln fact, standard 
methods for solving a high-order, possibly nonlinear input-output differen-
tial equation numerically (using computers) usually require decomposition 
into a set of simultaneous first-order equations anyway. The analytical so-
lution of input-output differential equations and of sets of state-variable 
equations is considered in Chapter 3. State-variable equations are particu-
larly convenient for complex multi-input, multi-output systems, while the 
input-output differential equation form is very convenient when the transfer 
function is to be readily derived analytically. 

2.8 Transfer Function Form 

The models in the previous sections are either ordinary differential equa-
tions or algebraic equations of time-dependent quantities. They are called 
time-domain models. Another method of capturing the dynamic behav-
ior of linear systems is through their frequency responses. Such models 
are called frequency-domain models. Laplace transformation is the key to 
frequency-domain modeling. The Tmnsfcr Function Form model of a dy-
namic system with an input u(t) and output y(t) is defined from the Laplace 
transforms of tl1e input and output such that 

Y(s) 
H(s) = U(s) 

bosm + b1sm- 1 + b2srn- 2 + ... + bm 
aosn + a1sn-1 + a2sn- 2 + ... +an ' 

where {bj} and { ai} are constants, and n 2: m. The variable .s is called the 
complex variable or the Laplace variable. In this book, both time-domain 
and frequency-domain models arc employed, and it is important to be able 
to convert freely from one form to the other. In addition to modeling linear 
systems in the frequency domain, Laplace transformation is also used in 
engineering to solve the dynamic system ordinary differential equations, 
i.e., obtain the system response. This is the subject matter of Chapter 3. 
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2.8.1 Obtaining the Transfer Function 

There are four ways of establishing the transfer function of a dynamic 
system 

e Directly taking the Laplace transform of time-domain models (state 
variable or input-output differential equation) 

• Using the s-operator 

~ Using transfer functions (obtained by employing Laplace transforms) 
of the components of the system to establish the overall system trans-
fer function 

• Using frequency response experimental data 

2.8.2 Directly Taking Laplace Transforms 

The transfer function model can be obtained directly from the time-
domain models (when all the initial conditions are known) by taking the 
Laplace trausforms throughout the differential equations. The time-domain 
models can either be in the state-variable form or in the input-output differ-
ential equation form. It is easier to start with the input-output differential 
equation form and hence it is advisable to convert the state-variable form 
to the input-output differential equation form, and then proceed to obtain 
the transfer function. The procedure can be summarized as follows: 

• Consider the input-output differential equation model or convert the 
state-variable form of the model to an input-output differential equa-
tion form. 

• Take the Laplace transforms of the input-output differential equation. 

• Apply the initial conditions (usually set to zero). 

• Obtain the Laplace transform of the output divided by the Laplace 
transform of the input. 

Consider a system that has the input-output differential equation 

where the input is u(t) and output is y(t). Taking Laplace transforms 
throughout the differential equation gives 

a1Y(s) + a2 [.sY(s)- y(O)] + a3 [s 2Y(s)- sy(O)- y(O)] = b1U(s) 
+b2 [sU(s)- u(O)]. 
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Setting all initial conditions to zero leads to 

a1Y(s) + a2sY(s) + a3s2Y(s) = b1U(s) + b2sU(s) 

Y(s) [a1 + a2s + a3s2] = U(s) [b1 + b2s]. 

The systern transfer function II ( s), defined as the Laplace transform of the 
output Y(8) divided by the Laplace transform of the input U(s) is then 
obtained as follows: 

Y(s) 
H(s) = U(s) 

This is the transfer function of the dynamic system. 
Consider a system with the following state-variable matrix model 

(2.20) 

(2.21) 

where x 1 (t) and x 2 (t) are the state variables, the u(t) is the input and 
y(t) is the output. In order to obtain the transfer function form for this 
system, the input-output differential equation must be established first. 
This is done by eliminating all the state variables from the state-variable 
equations except for the output y(t) (and its derivatives) and the input u(t) 
(and its derivatives). From the matrix form, the state-variable equations 
are given by 

:i::1 = a1:r1 + a2x2 + b1 u 
:i::2 = a0:r1 + b2u 
Y = C1X1. 

Elimination of the state variables proceeds as follows: 

:i::1 = a1x1 + a2x2 + b1u 
==? :'!'\ = a1:i::1 + a2:i::2 + b1 1.i 

Y = C1X1 
y 

==? X1 = -. 
C1 

(2.22) 

(2.23) 



Modeling of Dynamic Systems 95 

Substituting for :i:: 2 (Equation 2.22) into Equation 2.23 gives 

(2.24) 

Replacing x1 by }!_ in Equation 2.24 leads to 
Cl 

Y = a1 :i; + az (a3}!_ + b2'u) + b1u 
c1 c1 c1 

y = al'f; + c1a2 (a3 ~ + bzu) + c1b1u 

y = al); + aza3y + c1a2b2u + c1b1u 

(2.25) 

Equation 2.25 is the input-output differential equation for the system. 
Therefore, the transfer function of the system can be obtained by taking 
the Laplace transforms of this equation. 

s2Y(s)- sy(U)- ;~j(O)- a1 [sY(s)- y(O)]- aza3Y(s) = c1a2b2U(s) + 
c1b1 [sU(s)- u(D)]. 

Assuming zero initial conditions 

s2Y(s)- a1sY(s)- a2a3Y(s) = c1a2b2U(s) + c1b1sU(s) 

Y(s) [s2 - a 1 s- o2a3] = U(s) [c 1 a2b2 + c1b1s]. 

Hence, the transfer function is given by 

2.8.3 The s~Operator Method 

Starting with the time-domain models (state-variable form or 
output differential equation form), use the differential operator identity 

d 
s=-- dt. 

This operator is used to convert the time domain models into the frequency 
domain, thus facilitating the derivation of the transfer function. The s-
operator has also been called the p-operator. It is important to note that 
if the transfer function model of the system is given then the input-output 
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differential equation is easily obtained using the same identity, however, the 
initial conditions will be lacking. The s-operator is also useful in the general 
reduction of simultaneous differential equations. It is often necessary to 
combine a set of differential equations involving more than one dependent 
variable into a single differential equation with a single dependent variable. 
An example of such an equation is the input-output differential equation 
model. This ic; very handy when it is not obvious how to eliminate the 
unwanted variables easily. This algebraic method provides a useful means 
of manipulating sets of differential equations with constant coefficients. It 
is important to note that 8 must operate on the variable or expression that 
follows it, and that it is not a variable or algebraic quantity itself. 

Consider the state variable syst(;m in Equations 2.20 and 2.21, whose 
statc:-variable equations are given by 

±1 = a1x1 + a2x2 + b1u 

±z = a3x1 + b2u 
Y = C1X1. 

The three equations can be expressed in terms of the s-operator as follows: 

Pre-multiplying Equation 2.26 by 8 gives 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

Substituting for sX2 (Equation 2.27) and X 1 (Equation 2.28) in Equation 
2.29 leads to 

(2.30) 

Hence, the system transfer function is given by 

. Y(8) c1b1s + c1a2b2 
T(8) = U(s) = s 2 - a1s- aza3' 



Modeling of Dynamic Systems 97 

which is the same result as obtained by taking the direct Laplace transforms 
of the input-output Equation 2.25. Although the s-operator can be used to 
find the transfer function without first finding the input-output differential 
equation, it can also be used to get simplified time domain equations such 
as input-output differential equations. An expression of the input-output 
differential equation (Equation 2.25) can be obtained from Equation 2.30 
by reversing the s-operator. 

Y [s2 - a1s- a2a3] = U [c1b1s + c1a2b2] 

s2Y a1sY- a2a3Y = c1b1sU + c1azb2U 

When the s-operator is used in this way, i.e., in the general reduction of 
simultaneous dificrcntial equations into a single differential equation with a 
single dependent variable, it is sometimes called the p-operator. Consider 
a system represented by the following pair of equations, where y(t) is the 
output and u(t) is the input. 

i; + 2x + y = 3u 
2± + 5x- 2y + 2y = 0. 

(2.31) 

(2.32) 

The input-output differential equation and the system transfer function can 
be found by applying the s-operator. In terms of the s-operator, Equation 
2.31 and 2.32 become 

(s + 2)X + Y = 3U 
(2s + 5)X + ( -2s + 2)Y = 0. 

Pre-multiplying the first equation by (2s+5) and pre-multiplying the second 
by (s + 2) gives 

(2s + 5) [(s + 2)X + Y] = 3U(2s + 5) 

(s + 2) [(2s + 5)X + ( -2s + 2)Y] = 0. 

Subtracting Equation 2.34 from Equation 2.33 gives 

[(2s + 5)- (s + 2)( -2s + 2)] Y = 3U(2s + 5) 

(2s2 + 4s + 1)Y = U(6s + 15). 

(2.33) 

(2.34) 

(2.35) 

The input-output differential equation is obtained by reversing the s-operator 
in Equation 2.35. l-Ienee, 

2s2Y +4sY + Y = 6sU + 15U 
2jj + 4y + y = 6u + 15u. 



98 Design and Analysis of Control Systems 

The transfer function is obtained from Equation 2.35, thus 

H(s) = Y(s) = 6s + 15 . 
U ( s) 2s2 + 4s + 1 

It is important to note that s-operator (or p-operator) has the same effect 
as taking the Laplace transform of a system. 

2.8.4 The Component Transfer Function Method 

In this approach, the overall transfer function is obtained by finding 
the transfer functions of each component of the system and then using 
the relevant physical interconnection relationships or lavvs to form a set 
of algebraic equaLions involving the component transfer functions. These 
frequency domain equations are then solved to obtain the overall transfer 
function relating the output in Laplace transforms to the input in Laplace 
transforms. The block diagram or the signal-flow diagram can also be used 
to establish the overall system transfer function from component transfer 
functions. As an example, consider a car's cruise control system, where a 
component transfer function H 1 (s) from the speed error e(t) to the control 
signal u(t) is given by 

U(s) = KE(s) 
U(s) 

==? H1(s) = E(s) = K. 

Another component transfer function H 2 (s) from the control signal u(t) to 
the output speed v(t) is given by 

V(s) = [msb+b] U(s) 

V(s) b 
==? Hz(s) = U(s) = ms +b. 

Therefore, the overall transfer function H(s) from the speed error e(t) to 
the output speed v(t) can be obtained by 

H( ) = V(s) 
3 E(s) 

V(s) U(s) 
=--x--

U(s) E(s) 

= H1(s)H2(s) 
bK 

ms+b. 
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Hence, in this case, the overall transfer function is obtained as a product of 
the component transfer functions. The following electrical circuit problem 
further illustrates the use of the component transfer function method. 

Example 2.12 In the RLC electrical circuit shown below, assuming zero 
initial conditions, find the following: 

L 

o~-----~--i~-)---c~T---o v 1 (t) v2 (t) 

An RLC Electrical Circuit 

(a) The time domain equation relating i(t) and v1 (t). 
(b) The time domain equation relating i(t) and v2(t). 
(c) The component transfer functions 

H ( ) = Vi(s) 
1 s I(s) 

(d) The overall system transfer function 

Solution 2.12 (a) The KVL is used to get the expressions for v1(t) and 
v2(t) as follows: 

V1(t) = VL + VR + VC 

= L ~! + Ri(t) + ~I i(t)dt (2.36) 

v2(t) = vc 

= ~ 1 i(t)dt. (2.37) 

(b) The transfer function H1 ( s) is obtained by taking the Laplace transforms 
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( assctming zero initial conditions) of Equation 2. 36. 

V] (s) = sLI(s) + RI(s) + ~~: 

= I(s) [sL+R+ 8~] 
H ( ) = V1(s) 

1 s I(s) 

1 
= sL+R+ sC. 

Similarly, the transfer function H 2 ( s) is obtained by taking the Laplace 
transforms of Equation 2.37 

V ( ') _ I(s) 
2 s - sC 

H ( ) = V2(s) 
2 s I(s) 

1 
sC · 

(c) The overall transfer function H(s) is obtained fmm H 1 (s) and H 2 (s) 
as follows: 

H(s) = V2(s) 
vl (s) 

V2(s) I(s) 
=--x-

Vl(s) I(s) 

= V2(s) / V1(s) 
I(s) I(s) 

H2(s) 
H1(s) 

1 
sL+R+ -C' s 

1 
LC 

R 1 . 
s2 + L s + LC 

multiplicat·ion by one 

In this example the overall transfer function is a ratio of the two component 
transfer functions. 



Modeling of Dynamic Systems 101 

2.8.5 The Transfer Function in Pole-Zero Factored Form 

A special form of the transfer function of a dynamic system is the pole-
zero factored form, where the numerator is expressed as the product of 
zero factors and the denominator as a product of pole factors, as opposed 
to being expressed as polynomials of s. The pole-zero form is derived from 
rewriting the transfer function as 

H( ) = Y(s) 
8 U(s) 

bosm + b18m-l + b28m-2 + ... + bm 
aosn + a1 8n- 1 + a2sn- 2 + .. + an 

( 
m + bl .. m-1 + b2 b m-2 + + bm) bo 8 bo s bo 2 8 .. . bo 

= ao 8n + al 8n-l + a2 8n-2 + ... +.an 
ao ao ao 

= bo ((8-zt)(s.-z2) ... (8-zm)) 
ao ( 8 - p J) ( ~ - P2) ... ( s - Pn ) 

(2.38) 

where K = ho. Equation 2.38 represents the pole-zero factored form of 
ao 

the transfer function and is useful because it clearly indicates the zerm; 
(z;) and poles (pJ) of the system. This form is very useful in determining 
system characteristics such as stability, and will be extensively used in later 
chapters. 

2.9 Switching Between Different Model Forms 

In this book emphasis is placed on both time-domain (state variable 
and input-output differential equation forms) and frequency-domain models 
(transfer function, pole-zero and block diagram forms). It is important 
to be able to convert from one model form to another as this enhances 
system understanding. Furthermore, depending on the system analysi8, 
design of interest or specific application, one form may be more useful and 
informative than another. Consequently, the ability to analytically derive 
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one form of the dynamic system model from another form is imperative. 
There are functions in MATLAB (Appendix B) t.hat directly transform 
from one model form to another. 

<~ ss2tf: This function converts from the state-variable form to the 
transfer function form 

[num, den] = ss2tf (A, B, C, JJ), 

where num and den are the coefficients of the numerator polynomial 
and denominator polynomial of the system transfer function, i.e., 

H(s) = as2 + bs +c 
ds 2 + es + f 

num =[a b c] and den= [d e f]. 

For example, the following state-variable matrix model can be con-
verted to a transfer function model as follows: 

[ y ] = [ l () l [ ~ ] + [ 0 ] v, . 

[num, den] = ss2tf (A, B, C, D) 

num = [ 0 0 2
1
0] and den = [ 1 2

1
0 0] 

H(s) = ----""~ 
s2+-

20 

1 
20 

l 
s(s+ 20) 

1 
20s2 + s · 
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• tf2ss: This function converts from the transfer function form to the 
state-variable form 

[A, B, C, D] = tf2ss (num, den). 

For example, MATLAB can be used to find the state-variable form 
of the following input-output differential equation where zero initial 
conditions are assumed. 

y + 6y + 25y = 9,. + 3u 

First, the transfer function is obtained as follows: 

£ [jj + 6y + 25y] 

s2 Y(s) + 6sY(s) + 25Y(s) 

£ [9u + 3it] 

9U(s) + 3sU(s) 

H 3s+9 =* ( s) - --;;-----::--::--
- s 2 + 6s + 25 

num = [0 3 9] and den = [1 6 25] 

[A, B, C, D] = tf2ss (mun, den) 

0=[39], D = [o] 

(2.39) 

(2.40) 

(2.41) 

• ss2zp: This function converts from the state-variable form to the 
zero-pole form of the transfer function 

[z.p,k] =ss2zp(A,B,C,D). 

• zp2ss: This function converts from the zero-pole form of the transfer 
function to the state-variable form 

[A, B, C, D] = zp2ss (z,p, k). 

Thc:se last two functions can be illustrated hy using the matrices in 
Equations 2.40 and 2.41. 

[z,p, k] = ss2zp (A, B, C, D) 

[ -3 + 4j] z = -3, p = -3 - 4j ' k = 3. 
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From these parameters, the transfer function can be deduced 

H(s) = Y(s) 
U(s) 

= 3 [s-(-3)] 
[s- ( -3 + 4j)] [s- ( -3- 4j)] 

3(s + 3) 
(s+3 4j)(s+3+4j) 

3s + 9 
s 2 + 6s + 25 · 

Note that this equation is the same as Equation 2.39, as expected. 

2.10 Examples of Dynamic System Modeling 
In this section, a number of detailed examples are presented to clearly 

elucidate the concepts of modeling. 

2.13 The to the translational mechanical system. shown in 
the following diagrarn is the displacement x3 ( t) of the right end of the spring 
k1 . The displacement of m2 relative to m1 is x2. The forces eJ.:trtui by the 
springs arc zero when x 1 = x 2 x 3 = 0. 

11 
m2 

x3 (t) ...-b 

~~ x, 
~--... m, 

Translational Mechanical System 

(a) Dmw Lhe free-body diagrams of the system 
(b) Obtain the equations of motion. 
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Solution 2.13 (a) The free-body diagrams are drawn as follows: 

m1x1 • ~~ ~~?;.,')J l::l- · mz(X1- Xi) L:J--- bx2 ~ 
(b) The equations of motion are then obtain from the free-body diagrams. 

m1x1 + bi:2- k1[x3(t)- XI]= 0 

Example 2.14 Consider the mechanical system shown below, where the 
input is a displacement y 2 ( t), and the output is the force in spring k3 . 

(a) Draw the free-body diagrams for the system. 
(b) Obtain the equations of motion. 
(d) Choose a minimum set of variables for the system and justify the 

choice. 
(e) Express the equations of mot·ion in state-variable matri:r; form (i.e. 

obtain A, n, C, D). 
Solution 2.14 (a) The forces acting on the masses are shown in the fol-
lowing free-body diagrams. 

~x1 ~x2 

bl xl --b2 c x.2 k3 (y2-~) 

ml Xr-- ml m2 
kl xi k2 (x2 -xi 

..,.._ ___________ 

m2x2 

Translationul Mechanical System: Freebody D·iagrarn 
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{b) The equations of motion are obtained as: 

{c) There are five energy storing elements {2 masses and 3 springs) but 
only four are independent, since m2 and k3 are dependent. Therefore, the 
state variables are chosen as 

where the input is Y2 ( t). 

(d) Two of the equations of the derivatives of variables are simple 

±1 = ±1 
±2 = ±2. 

The other two equations are obtained by rearranging Equations 2.42 and 
2.43, 

The output is the spring force in the spring k3 

y = k3(x2 - Y2(t)) 

= k3x2- k3y2(t). 



Modeling of Dynamic Systems 107 

Therefore, the state variable system is given by 

0 1 0 0 

r ~: 1 
_ ( k1 : 1 k2 ) _ c1 : 1 b2 ) k2 b2 

m1 m1 

r !: 1 0 0 0 1 
:r:z 

/;;2 b2 _ ( k2 I k:3) b2 
1112 m2 lll:z rn2 

0 

0 

+ 0 
Y2 (t ), 

where the output is given by 

F I 0 0 k, 0 l r ~1 1 + [-k,] (1.)1 . 

Ex<cunple 2.15 Consider the rotational mechanical system. shuu•n below. 

(!) 
1 

·Negligible Inerlia 

Diagram for Example 2.15 

(a) Draw the free-body diagrams of the system. 

2 

{b) Find the dynamic system model in the foTrn of an inpuJ-oulpul dif-
ferential erJlwlion. wheTe the input is angular speed w(t) and the output is 
angular "-'' 1 (t). 
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Solution 2.15 The free-body diagram for disk J is shown below. 

ro\: 
~ 

bzCOt 
Free-Body Diagram for Example 2.15 

Prom the free-body diagram of disk J the dynamic equation can be deduced 

b1 [w(t) - w1] = Jw1 + b2w1 

Jw1 + (b1 + b2)w1 = b1w(t) 

. (b1 + b2) b1w(t) 
w1 + J w1 = -J-. 

Example 2.16 (a) Draw the free-body diagrams for the rotational mechan-
ical system shown below. 

Fixed End 
\ 

\ 

b 

Negligible Inertia 

Rotational Mechanical System 

(b) Explain why the state-variable vector should be chosen as 
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(c) Express the dynamic equations in the state-variable matrix form {i.e. 
obtain A, B, C, D) where the input is the applied torque T(t) and the 
output ·is the viscous fr-ictional torque on disk h. 

Solution 2.16 (a) The free-body diagrams are given by 

Tt)~. 
kQ(93- ~) kz(Sr ~) 
~ 0) 0 ': 1z(J)2 

kl~ 

______,... 
~ 

, __ 
b( ffiz - ID:3) ID:3) 11 ro1 

FrTc-Body Diagrams 

(b) There are four independent ene·1gy storing element0,· two shafts and 
two disks (with moment of inertia J 1 and J 2). The potential energy stored 
in a shaft on the ang1Llar displacement O(t) and the kinetic energy 
stored in a rotating disk depends on the angular speed w(L). Hence, the 
minimum 0et of state vaTiables can be by 

J1 + (k1 + Jc2)e1- k283 = o 

hwz + buJz -- bfh = T(t) 

-kzBl - bw2 + bfh + k203 = 0. 

Adding the second and the third equation the following equation is obtained 

Rewriting these equations ·in terms of state variable gives 

. 1 
w1 = 11 [-(k1 + kz)BI + kzB:J] 

1 
wz = ]z [k281- k283 + T(t)] 

. 1 
83 = b [kzB1 + b'.).)2 - kz83]. 
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The output equation is given by 

Tb = b(w2 - w3) 

= b(w2- i)s) 

= bw2 - [k281 + bw2 - k283] 

= -k2e1 + k2e3. 

Putting the above equations in matrix form produces 

0 1 0 0 

0 0 

0 1 

T. ~ ( -k, 0 0 k,] [ m + [OJ [11. 

0 

0 

[T] 

0 

Example 2.17 (a) Draw the free-body diagram of the gear and shaft mech-
anism shown below. 

Fixed End 

T(t) 

A Gear and Shaft Mechanism 

(b) Find expressions for the gear ratio, N, and the angular displacements, 
Ba(t) and eb(t). 



Modeling of Dynamic Systems 111 

(c) Find the equivalent stiffness constant k,q such that the algebraic model 
of the system is given by 

T(t) e1 = --, 
keq 

Solution 2.17 (a) The free-body is shown here. 

T(t) ~(~-8,) 
~ ~ 

00 
Free-Body Diagrams 

(b) The gear ratio is given by 

N = rb 
ra 
Ba eb 

'* Ba =Neb=(~:) eb. 
From the free-body diagrams 

T = k1(B1- Ba) 

T 
=? 81 = k1 + Ba 

T = k1(B1- Ba) = Tafc 

T 
=} fc =-

ra 

nT 
==? Bu = -k-. 

Ta 2 

(first free-body dgm) 

(second fr-ee-body dgm) 

(third free-body dgm) 

(using Equation fJ.46) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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Substituting this expression of fh (L) (Equation 2.4 1) in Equation 2.44 leads 
to the expression for e a ( t). 

Substituting this expression for Ba(t) in Equation 2.45 leads to 

1 
===?-- = 

keq 

(2.48) 

This is the equivalent torsional stiffness keq for the gear and shaft system. 
It can also be e:cpressed in terms of the gear ratio as 

klk2 
keq = k2 + k1 N 2 . 

Example 2.18 In the following rotational mechanical system there is a 
driving torque T(t) ex:erted on disk J 1 and a load torque TL(t) exerted on 
disk J2. 
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Rotational Mechanical System 
(a) Draw the free-body diagrams for the system. 

113 

(b) Choose the minimum number of state variables for this system and 
give a rationale for the choice. 

(c) Express the dynamic equations in state-variable matrix form (i.e. 
obtain A, B, C, D) where both the applied torque T(t) and the load torque 
TL(t) are considered as inputs. The output is the torque in the shaft k. 

Solution 2.18 (a) The free-body diagrams are shown below. 

0 

Free-Body Diagrams 

(b) There are three independent energy storing elements; one shaft and 
two disks (with moment of inertia J 1 and Jz). The potential energy stored 
in a shaft depends on the angular displacement B(t) and the kinetic energy 
stored in a rotating disk depends on the angular speed w(t). Hence, the 
minimum set of state variables can be represented by 

x(t) = [Br WI w3f, 

where Br(t) is the relative angular displacement between the two ends of the 
shaft, 

Br(t) = B2 - 83 

==} Br(t) = W2 - W3. 

(2.49) 

(2.50) 
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(c) From the free-body diagrams the equations of motion are determined. 

J1w1 + b(w1 - w2) = T 

b(w1- w2) = k(02- 83) 

k(02 - 83) = TL + J2w3. 

Replaci'll.g (02 - 03 ) bye, in these equations gives 

J1w 1 + b(w1 - w2) = T 

b(w1 - w2) = kOr 

kOr = TL + J2W3. 

Substituting Equation 2.52 into Equation 2.51 gives 

Also, from Equation 2.52, it follows that 

Substituting Eqvaiion 2. 55 into Equation 2. 50 gives 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

Rean-anging Equations 2.53, 2.54 and 2.56 produces the state vaTiable 
equations. 

. k 
Dr= --Or+ W]- W3 b 

k T w1 =--Or+-
Jl Jl 

. k TL 
W3 =-Or--. 

J2 J2 

The output equation is given by 

rk = k(02- e3) 
= kOr. 
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The state-variable matrix form is obtained by extracting the coefficients of 
the variables and inputs. 

k 
1 -1 

b 
0 0 

[ f:l k 

[ ~:] + 

1 
0 

Jl 
0 0 Jl [~] 

-1 k 0 
h 

0 0 h 

1< ~ [ k 0 0] [ ~:] + [0 0] [ iJ 
Example 2.19 In the following electrical circuit the input is a current ii(t) 
and the output is a voltage V0 ( t). 

+ 

1. (t) t 
I 

L c 

Circuit Diagram 

(a) Choose the state variables for- the system. 
(b) Derive the state-var-iable matrix model (i. c. obtain A, B, C, D). 
(c) Find the input-outp11t differential equation model for the circuit. 

Solution 2.19 (a) There are two independent energy storing elements; a 
capacitor and an inductor. The energy stored in the capacitor is a function 
of the voltage vc(t) and that stored in the inductor depends on the current 
iL(t). Hence, the minimum set of variables is chosen as 

x(t) = [iL vcf, 
(b) The annotated ciTcuit diagram with current dinctions is shown below. 
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+ 

l. o L c 
I 

Annotated Circuit D'iagmm 

From analyzing the inductor and capacitor it follows that 

L diL 
V£= -

dt 
diL 1 

=> dt = LVL 
dvc 

ic=C-dt 
dvc 1. 

=> Tt = c'c· 

Using KCL and KVL for the circuit 

vL = R1(ii- iL) + vc 

diL 1 . . 
=> dt = L [R1(2i- zL) + 

. . . (. . ) vc 
2C = 2R1 - Zo = 2i - Z£ - R 2 

The output is given by 

dvc 1 [ . . vc] =>- =- (z - Z£)--dt C ' R2 . 

1!o = Vc. 

(2.57) 

(2.58) 
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Writing the above equations ·in state-variable matrix form produces 

' . . diL(t) 
(c) From Equatwns 2.57 and 2.58 the varwbles ZL(t) and~ should 

be eliminated in order to obtain the input-output differential equation. 

.. 1 [·· ·. V0 ] Vo = C ~i - ~L - R 2 

using 

1 [· 1 { (. , ) } V0 ] = C 1; - L R1 zc + ZR~ + Vo - R2 

1 [·· 1 { ( . V 0 ) } Vo ] = C Zi - L R1 Cva + R2 + Va - R2 

Rearranging this equation gives the input-output differential equation for 
the electrical circuit as 

Example 2.20 The differential equations for the; inverted pendulum arc 
defined as follows: 

(I+ Nfpl 2)a- Mpgla = 1\!Iplx 

(Mt + Mp)x + bx- Mplii = u. 
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(a) Why is it not possible to put these equations into state-variable form 
using state vector x(t) =[a a x ±]T, where u(t) ·is the input ? 
(b) Write the equations in the form 

Ex= A'x+B'u 

and identify the elements ofE, A' and B' (notice that Eisa 4 x 4 matri:r). 
(c) Show how A and B for the standard state variable description of /.he 
inverted pendulum equations of motion can be computed. 

Solution 2.20 (a) It is not possible to put these equations into state-
variable form because two derivatives of the variables, x and a, appear in 
the same equation. 

(b) In order to write the equations in the form 

Ex= A'x + B'u, 

consider the set of state-variable equations (with terms involving derivatives 
of the variables on the left-hand side and those involving the variables on 
the right-hand side), 

(I+ Mrl 2 )a- Mplx = Mpgla 
±=± 

where the vector of state variables is given by 

x(t) =[a a X x]T. 

Pulling out the coefficients of the variable derivatives (on the left-hand side) 
and the coefficients of the variables and input (on the right-hand side) leads 
to 

1 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 1 

0 0 0 0 -b 

(c) 

Ex= A'x+B'u 
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Pre-multiplying by E-1 the following equation is obtained 

E- 1Ex = E- 1 A'x + E- 1B'u 

119 

x = E- 1 A'x + E- 1B'u (2.59) 

The expressions for A and B are then obtained by comparing Equation 2.59 
with the standard state-variable equation. 

x= Ax+Bu 
A= E- 1 A' and B = E- 1B'. 

Example 2.21 (a) Write the dynamic equations for the circuit shown 
below. 

2 

Ya VI 

Circuit Diagram 

(b) Put equations in the state-variable form where the voltages va(t) and 
vb(t) are the inputs, and both v1 (t) and v2 (t) are the outputs of interest (i.e. 
obtain A, B, C, D). Choose the state variables as v1(t) and vz(t). 

Solution 2.21 (a) The dynamic equations are obtained by applying the 
KCL and manipulating the result. Employing the KCL at node 1 gives 

Applying the KCL at node 2 gives 
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(b) Expressing these equations in state-variable matrix form is achieved by 
vulling out the coefficients of the variables and inpvls. 

() 

() 

Example 2.22 (a) Obtain the dynamic eqMtions of the circuit shown 
below. 

+ 

3 2 

u 

Circuit Diagram 

{b) Explain why the state variables should be chosen as ve, ( t), ve2 ( t), 
and ve3 (t). 

(c) Express the equations in state-variable matrix form where the input 
is voltage u(t) and the output is voltage v0 (t). 

Solution 2.22 (a) The output is given by using the KVL 

u + Ve1 + Ve2 - Vo = 0 

Uo = Ve1 + Ue2 +- u. 
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Applying KCL at node 2, 

C . vo- ve3 
- 2 ve2 = R2 

C . u + ve1 + ve2 - Ve3 
- 2 ve2 == R2 

-u - Ve1 - ve2 + Ve3 ve2 = __ __::::.=._ _ __:::.=:..._........:::..:!. 

R2C2 

Applying KCL at node 1, 

Applying KCL at node 3 

. u - ve3 u + ve1 + ve2 - ve3 ve - + __ ...::....o. _ __.:_..::....__..:...e_ 

3 - R1C3 R2C3 

(b) There are three independent energy storing elements: three capacitors. 
The energy stored in the capacitor is a function of the voltage ve(t). Hence 
the minimum set of variables is chosen as 

(c) The state-variable matrix form is then obtained by extracting the co-
efficients of the variables ve1 , ve2, and ve3 , and input u. 
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Example 2.23 In the figure shown below, determine the inp'ut-output dif-
ferential equation of the circuit. 

Solution 2.23 Using the KCL and finding all the currents flowing from 
the so·urces (virtual grmmd) leads to 

0 - Vo VI - 0 V2 - 0 V3 - 0 --=--+--+--
Rl Rt R2 R3 

This means the circuit is a summer (it performs a summing function), 
since it adds up the input voltages. 
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Example 2.24 Find the input-output differential equation describing the 
circuit shown in the following diagram 

c 

+ 
v.(t) 

I 

Op-Amp Circuit: Virtual-Short Concept 

Solution 2.24 Applying KCL at B gives 

1 
C(vi- vB) = -vB 

R3 

C(vB- vi)+ ~3 vB = o. 

By the virtual-short concept, v B = v A, which according to the voltage-
divider rule can be written as VB= [Rl/(R1 +R2 )]v0 • Substituting this into 
the previous equation gives 

from which 

or 

This is the input-output equation for the op-amp circuit. 
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2.10.1 An Electromechanical System 

Figure 2.3 shows a simplified model of a typical electromechanical system, 
that is, a system containing both moving mechanical parts and electrical 
components. The system represents a capacitor microphone, and consists 
of a parallel plate capacitor connected into an electric circuit. Capacitor 
plate 1 is rigidly fastened to the microphone frame. Sound waves pass 
through the mouthpiece and exert a force fs(t) on plate 2, which has mass 
m and is connected to the frame a spring (k) and a damper (b).The 

L R 

i(t) 
v 

A 

1---x(t}-1 

FIGURE 2.3 
A Simple Electromechanical System 

capacitance C(:r) is a function of the distance :r(L) between the plates 

C(x) = EA' 
X 

where E is dielectric constant of the material between the plates, and A is 
the surface area of the plates. The charge q and the voltage e across the 
plates are related by 

q = C(x)e. 

The electric field in turn produces a force fe , which opposes motion of the 
movable plate. This force is given by 
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Example 2.25 Consider the electromechanical system in Figure 2.3. 
(a) Draw the electrical circuit and the free-body diagram that can be used 

to represent this system. 
{b) Justify the choice of the vector of state variables as 

[ . ']T X= q q X X • 

(c) Derive the state-variable model for this electromechanical system, 
where the output is the force fe on the movable plate and the inputs are 
the voltage v(t) and sound force fs(t) 

Solution 2.25 (a} Prom Figure 2.3 the electrical circuit of the system can 
be deduced to be an RLC circuit with a variable capacitor C(x) as shown in 
Figure 2.4. 

L + 

C(x) 
v(t) 

+ 

FIGURE 2.4 
RLC Circuit for Electromechanical System 

The free-body diagram is obtained by considering the forces acting on 
capacitor plate 2. 

md_2x 
dt2 
kx 

bdx 
dt 

FIGURE 2.5 

• 

m ... 

Free-Body Diagram: Electromechanical System 

~(t) 
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(b) There are four energy storing elements in the electromechanical sys-
tem: a copncitor, an inductor, a spring, and a moving mass. The electrical 
energy stored in a capacitor is a function of the charge q(t), the electrical 
energy stored in an inductor is a function of the current q(t), the potential 
energy stored in a spring is a function of the displacement x(t), and the 
kinetic energy stored in a moving mass is a function of the velocity x(t). 
Hence, the minimum set of variables is given by 

[ . ']T x=qqxx. 

(c) Employing the KVL in Figure 2.4 gives 

vc + V£ + vn- v(t) = 0 

v(t) = VR + VL +vc 

= Ri + L ~~ + ctx) J i(t)dt 

dq d2 q 1 J dq 
= R dt + L dt2 + C(x) dt dt 

- Rdq L d2q qx 
- dt + dt2 + EA 

(using i(t) = ~n 

(using C(x) = E~l). 

Balancing the forces in the free-body diagmm in Figure 2.5 gives 

f, ( t) = mx + bx + kx + fe 
1 

= mx + bx + kx + -Aq2 
2E 

. q2 
(usmg .fe = 2cA). 

This is a nonlinear system because of the terms qx and q2 , and hence, the 
matrices A and C cannot be extracted. The state variable system can be 
represented as follows: 

x 

1 ( . qx ) -- Rq+- -v 
L eA 

1 (b. k 1 2 j') -- J;-t- x+--q - s 
m 2t:A 

1 y = --q2 
2eA 
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These equations are in the general state-var·iable form for nonlinear systems 

x(t) = f(x, u, t) 
y(t) = g(x, u, t), 

where the state variable and input vectoTs are given by 

x(t) = [q q x x]r and u(t) = [v .fsr. 

Example 2.26 The pulley system shown belo·w is assv.rrwl to be ideal. 
Draw the free-body diagrams and obtain the modeling equations. 

Ideal/ 
Pulley 

Fig. 5 

Solution 2.25 The free-body diagrams are shown in the following figures. 

mzxz 

mz 

g 

Note the inclvsion of gmvity (g) in the equations for the vert·ical system. 

Example 2.27 (a) Write the equations describing the series combination 
of the tmnslutional mechanical elements shown below. 
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(b) Find Uw expressions for Keq and Beq (see the fig'lLre below) such that 
the motions of the ends of the combination arc the same as those shown 
above, 

~ X 5 ·1 
*lx~__l 

-~ f(t) keq beq f(t) 

Solution 2.27 (a) The solution is obtained from analyzing the series as 
follows,' 

f(t) -1 ~~4~---iJ--s f(t) 
kl [)l k2 b2 

From (1-2) 

from (1-8) 

from (1-4) 

from (1-5) 

(b) 

f(t) ~-~D-5 f(t) 
eq eq 

from (1-5) 
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2.11 Linearization of Nonlinear Models 
The differential equations describing the dynamic behavior of most prac-

tical systems are nonlinear. This is because in practice many elements of 
a dynamic system are inherently nonlinear and are ouly linear over a lim-
ited range of operating condition:-;. A nonlinear differential equation is one 
where the derivatives of the state variables have a nonlinear relationship to 
the states themselves and/ or the inputo; such that the differential equations 
cannot be written in the form 

x(t)=Ax+Bu 

y(t) = Cx + Du, 

but rather in the general form 

x(t) = f(x, u, t) 

y(t) = g(x, u, t). 

The modeling, analysis, and control design are far easier for linear than 
for nonlinear systems. Real systems have all kinds of nonlinearities such as 
deadband, backlash, Coulomb friction, hysteresis, quantization, saturation, 
and kinematic nonlinearities. Thus, a controller designed for a linear sys-
tem model to satisfy performance specifications may perform poorly when 
applied to the actual system. The trade-off here is between mathemati-
cal tractability of the linearized model and greater validity of a nonlinear 
model. When confronted with a mathematical model that contains nonlin-
earities, there are four approaches that can be used: 

• Solve the nonlinear differential equations directly 

• Small signal linearization (Linearization about an operating point) 

• Linearization by feedback 

• Obtain computer solutions of the response for specific cases of interest 

The first alternative is possible only in specialized cases and will not be 
pursued. Linearization by feedback involves using part of the control effort 
to cancel the nonlinear terms and to design the remainder of the control 
based on linear theory. This technique is accomplished by subtracting the 
nonlinear terms out of the equations of motion and adding them to the 
control equation. The result is a linear system, provided the computer 
implementation of the control system has enough capability to compute 
the nonlinear terms fast enough. Linearization by feedback is popular in 
the field of robotics, where it is called the method of computed torque. It 
is also a research topic for control of aircraft and space shuttles. 
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2.11.1 Small Signal Linearization 

The most popular and general approach employed in modeling nonlinear 
systems is small signal linearization. It is applicable for a broad range of 
systems and is extensively used in industry. Linearization is the process 
of finding a linear model that approximates a nonlinear one. If a small 
signal linear model is valid near an equilibrium and is stable, then there is 
a region (usually very small) containing the equilibrium within which the 
nonlinear system is stable. Thus one can make a linear model and design 
a linear control for it such that, in the neighborhood of the equilibrium, 
the design will be stable. Since a very important role of feedback control is 
to maintain the process variables near equilibrium, such small-signal linear 
models are a frequent starting point for control models. 

The strategy is to determine the equilibrium points and then linearize the 
system. An equilibrium point is a state in which the system would remain if 
it were unperturbed by external disturbances. An equilibrium point can be 
unstable (an egg standing on its end), neutrally stable (a ball on a table), 
or stable (a book lying on a table). For a system under feedback control, 
an equilibrium point is called an operating point. A linearized model can 
be used to approximate a nonlinear system near an equilibrium point of 
the nonlinear system by a procedure called small signal linearization. The 
resulting linear system has an equilibrium point at zero that corresponds 
to the equilibrium point of the nonlinear system. While linearized models 
are only an approximation of the nonlinear system, they are convenient to 
analyze and they give considerable insight into the behavior of the nonlinear 
system near the equilibrium point. For example, if the zero equilibrium 
point of the linear system is stable, then the equilibrium of the nonlinear 
system is locally stable. The approximate linearized model of the system 
will be considered. 

2.11.2 Linearization of Element Laws 

A method is developed for linearizing an element law where the two vari-
ables, such as force and displacement, are not directly proportional. Next, 
the linearized element law is incorporated into the system model. Mechani-
cal systems with nonlinear stiffness or friction elements are considered, and 
then nonlinear electrical systems are discussed. The object of linearization 
is to derive a linear model whose response will agree closely with that of the 
nonlinear model. Although the responses of the linear and nonlinear models 
will not match exactly and may differ significantly under some conditions, 
there will be a set of inputs and initial conditions for which the agreement 
is satisfactory. In this section the following are considered: the linearization 
of a single element law, a nonlinear operating point, a nominal value and 
incremental variable, graphical approach series-expansion approach. 
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2.11.3 Linearization of Models 

The linearized element laws can now be incorporated into a system model, 
thus producing a linearized model from a nonlinear one. Starting with a 
nonlinear model, the procedure can be summarized as follows: 

• Determine the operating point of the model by writing and solving 
the appropriate nonlinear algebraic equations. Select the proper op-
erating point value if extraneous solution" also appear. 

• Rewrite all linear terms in the mathematical model as the sum of 
their nominal and incremental variables, noting that the derivatives 
of constant terms are zero. 

• Replace all nonlinear terms by the first two terms of their Taylor-
series expansions, that is, the constant and linear terms. 

• Using the algebraic equations defining the operating point, cancel the 
constant terms in the differential equations, leaving only linear terms 
involving incremental variables. 

• Determine the initial conditions of all incremental variables in terms 
of the initial conditions of the variables in the nonlinear model. 

The operating point of the system will be a condition of equilibrium in 
which each variable will be constant and equal to its nominal value and in 
which all derivatives will be zero. Inputs will take on their nominal values, 
which are typically selected to be their average values. For example, if a 
system input is 

u (1.) = A + B sin wt, 

the nominal value of the input would be used. Under these conditions, the 
differential equations reduce to algebraic equations that one can solve for 
the operating point, using a computer if necessary. In general, the coeffi-
cients involved in those terms that came from the expansion of nonlinear 
terms depend on the equilibrium conditions. Hence, a specific operating 
point must be found before the linearized model can be expressed in nu-
merical form. The entire procedure will be illustrated by an example. 
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Nonlinear Spring Characteristic: Linear Approximation 

2.11.4 Linearization Concepts 

Linearization of the element law is carried with respect to an operating 
point as shown in the following diagram, which depicts the nonlinear spring 
characteristic (force f(t) vs. displacement x(t) curve). The operating point 
is a specific point on this curve and is denoted by the coordinates (x, }). 
Thus the displacement x(t) can be expressed as 

x(t) = x + x(t), 

where :I: is a constant term called the nominal value of :r:, and x(t) is the 
incremental variable corresponding to x. Similarly, the force f(t) is repre-
sented in the same way 

f(t) = J + ](t), 
where 

J = f(x). 

With the necessary terms defined, element laws can be linearized graphi-
cally as shown in the previous figure. The tangent curve to the nonlinear 
law f(x) is a good approximation to the nonlinear curve around the oper-
ating point. The slope of the tangent is given by 

df 
k = dxix=x· 

Hence the equation of the tangent is given by 

f = J + k(x- x) 

(!- J) = k(x- x) 

j = kx. 
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Thus, the lineari?:ed element law can be expressed in terms of incremen-
tal variables, }(t) and x(t). The results are graphically displayed in the 
following diagram. 

f 
/\ 

f 

f 

X 

-....._ f(x) 

/\ 
X 

Operating 
point 

X 

Nonlinear Spring Characteristic: Incremental Variable Coordinates 

Example 2.28 A nonlinear translational spring obeys the force-displacement 
law 

f(:r) = lxlx. 

Determine the linearized elem.cnt law in numerical form for each of the 
following operating points 

Solution 2.28 The nonlinear law can be expressed as 

f(x) = { -:x·2 for x < 0 
for x 2: 0. 

The slope of the tangent at the operating point is given 

k = df 
1 

__ = { - 2x 
dx x-x 2x 

= 2Jxl for all x. 

for x < 0 
for :T· 2: 0 

Hence, the linear·ized element law in terms of incremental variables is giuen 
by 

J = 2lxlx, 
where 

k = 2lxl 
describes the variable spring constant. For the four values of x the results 
are summarized in the following figure and table: 
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for~ =2 

Nonlincm' Spring Clwmcteristic: Linear Approximations for the Four 
Values of x. 

Xi Ji ki 

1 -1 -1 2 

2 0 0 0 

3 1 1 2 

4 2 4 4 

In ic:Tms of accuracy, the approximation is quite good for deviations up to 
0 . .90 fmm the operating point. 

12 Experimental Data Approach 

Here, frequency response experimental data are used to construct the 
transfer function model. The techniques that arc used form part of Lhe 
important subject of system identification. There are several reasons for 
using experimental data to obtain a model of the dynamic to be 
controlled. In the Jlrtit place, the best theoretical model built from equations 
of motion is still only an approximation of the actual system. Sometimes, 
as in the ca::;c of a very rigid spacecraft, the theoretical model is extremely 
good. Other times, as with many chemical processes, ::;uch as paper making 
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or metal working, the theoretical model is very approximate. In every case, 
before the final control design is done, it is important and prudent to verify 
the theoretical model with experimental data. 

In situations where the theoretical model is especially complicated or the 
physics of the process is poorly understood, the only reliable information on 
which to base the control design is experimental data. Finally, the system 
is sometimes subject to on-line changes, which occur when the environment 
of the system changes. Examples include: an aircraft changing altitude or 
speed, a paper machine given a different composition of fiber, or a nonlinear 
system moving to a new operating point. On these occasions there is need 
to re-tune the controller by changing the control parameters. This requires 
a model for the new conditions, and experimental data are often the most 
effective, if not the only, infonnation available for the new model. 

There are four kinds of experimental data that can be used for generating 
a dynamic system model 

e Transient response, such as that obtained from an impulse or a step 
input 

• Frequency response data, which result from exciting the system with 
sinusoidal inputs at mauy frequencies 

• Stochastic steady state information, as might come from flying an air-
craft through turbulent weather or from some other natural source of 
randomness 

$ Pseudo-random-noise data, as may be generated in a digital 

computer 

Each of these classes of experimental data has its own properties, advan-
tages, and di::;advantages. 

2.12.1 Transient Response 

Transient response data are quick and relatively easy to obtain. They 
are also often representative of the natural signals to which the 
is subjected. Thus, a model derived from such data can be reliable for 
designing the control system. On the other hand, in order for the signal-
to-noise ratio to be sufficiently high, the transient response must be highly 
noticeable. Hence, the method is rarely suitable for normal operations, so 
the data must be collected as part of special tests. A second disadvantage is 
that the data doct: not come in a form suitable for standard control 
designs, and some parts of the model, such as poles and zeros, must be 
computed from the data. This computation can be simple in special cases 
or complex in the general case. 
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2.12.2 Frequency Response 

Frequency-response data (see Chapter 6) is simple to obtain but sub-
stantially more time-consuming than transient-response information. This 
is especially true if the time constants of the process are large, as often 
occurs in chemical processing industries. As with the transient-response 
data, it is important to have a good signal-to-noise ratio, hence obtain-
ing frequency-response data can be very expensive. On the other hand, as 
will be seen in Chapter 6, frequency-response data are exactly in the right 
form for frequency-response design methods, so once the data have been 
obtaiued, the control design can proceed immediately. 

2.12.3 Stochastic Steady State 

Normal operating records from a natural stochastic environment at first 
appear to be an attractive basis for modeling systems since such records are 
by definition non-disruptive and inexpensive to obtain. Unfortunately, the 
quality of such data is inconsistent, tending to be worst when the control 
is best. This is because under these conditions the upsets are minimal and 
the signals are smooth. At such times, some or even most of the system 
dynamics are hardly excited. Since they contribute little to the system 
output, they will not be found in the model constructed to explain the 
signal~. The result is a model that represents only part of the system and 
is sometimes unsuitable for control. In some instances, as is the case when 
trying to model the dynamics of the electroencephalogram (brain waves) of 
a sleeping or anesthetized person to locate the frequeucy and intensity of 
alpha waves, normal records are the only possibility. they are the 
last choice for control purposes. 

2.12.4 Pseudo-Random Noise (PRBS) 

Finally, the pseudo-randorn signals that can be constructed using digital 
logic have much appeal. Especially interesting for model making is the 
pseudo-random binary signal (PRBS). The PRBS takes on the value +A 
or -A according to the output (1 or 0) of a feedback shift register. The 
feedback to the register is a binary sum of various states of the register 
that have been selected to make the output period (which must repeat 
itself in finite time) as long as possible. For example, with a of 20 
bits, 211 (over a million) pulses are produced before the 
Analysis beyond the scope of this text has revealed that the signal 
is almost like a broad-baud random signal. Yet this signal is entirely under 
the control of the engineer who can set the level (A) and the length (bits 
in the register) of the signal. The data obtained from tests with a PRBS 
must be analyzed by computer, and both special-purpose hardware and 
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programs for general-purpose computers have been developed to perform 
this analysis. This approach has extensive applications. 

2.12.5 Models from Transient-Response Data 

In order to obtain a model from transient data it is assumed that a step 
response is available. If the transient is a simple combination of elementary 
transients, then a reasonable low-order model can be estimated using hand 
calculations. For example, the step response is monotonic and smooth. 

2.12.6 Models from Other Data 

A model can be generated using frequency-response data, which are ob-
tained by exciting the system with a set of sinusoids and plotting. In 
Chapter 6 it will be shown how such plots can be used directly for design. 
Alternatively, one can use the frequency response to estimate the poles and 
zeros of a transfer function using straight-line asymptotes on a logarithmic 
plot. The construction of dynamic models from normal stochastic operat-
ing records or from the response to a PRBS can be based either on the 
concept of cross-correlation or on the least-squares fit of a discrete equiva-
lent model, both topics in the field of system identification. They require 
substantial presentation and background that are beyond the scope of this 
text. 

2.12.7 Pure Time Delay 

\Vhen a tap is turned on at one end of a long hose-pipe it takes some time 
before the water appears at the far encl. When the feed lo a conveyor belt is 
changed it takes some time for the change to be observed at the other end. 
These are two examples of the phenomenon of pure-time delay, also called 
transportation lag or dead time. The waveforms of an arbitrary input to a 
pure-time delay ofT seconds and the output are shown below. The output 
wave-form is exactly the input wave form shifted T seconds into the future. 
A pure-time delay can be modeled using Laplace transforms by 

G(s) =e-sT. 

2.13 Problems 

Problem 2.1 For the following translational mechanical system, the spTings 
are undefiected when ::r:1 X2 = 0. 
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~I 

Translational Mechanical System 

(a) Draw the free-body diagrams for the system. 
(b) Write down the dynamic equations of motion. 
(c) Choose the minimum set of state variables for the sysleTn and justify 

your choice. 
(d) Develop the system state-variable matrix model (i.e. find A, B, C, 

D), where the input is force f ( t) and the output is the force in spring k2 . 

Problem 2.2 For the system shown below, the springs are undeflected 
when x1 = x2 = 0, and the input is force f(t). 

~I 

f---- f(t) 

b2 /-'-;77--<->-:H/L-.>..-

Translational Mechanical System 

(a) Draw the free-body diagrams for the system. 
(b) Write down the dynamic equations of motion. 
(c) Choose the minimum set of state variables for the system and justify 

your choice. 
(d) Develop the state-variable equations in matr-·ix form (i.e. find A, B, 

c, 

Problem 2.3 For designing an automobile suspension, a two-mass system 
can be ·used for modeling as shown in the following diagram. 
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kw • Road surface 

r 

Inertial reference 

The Quarter- Car Model 

This is called a quarter-car model because it comprises one of the four 
wheel suspensions. The car and wheel positions are denoted by y(t) and 
x(t) respectively. These displacements are from static equilibrium which 
corresponds to no inputs except gravity. 

(a) Draw the free-body diagram of this system, assuming one-dimensional 
vert'ical motion of the mass above wheel. 

(b) Write down the equations of motion for the au,tomobile. 
(c) Ex:p1·css these equations in a state-variable matrix form ( A,B, C,D) 

using the follow'ing state-variable vector, 

x(t) = [x x y y]T, 

and justify this choice of state variables. Note that the car and wheel posi-
tions, y(t) and x(t), are the two outputs of the car system while the input 
is the unit step bump r ( t). 

(d) Plot the position of the car and the wheel after the car hits a "unit 
bump" (i.e. r(t) is a unit step) using MATLAB. Assume m1 = lOkg, 
m2 = 250kg, k111 = 500, OOON/m, ks = 10, OOON jm. Find the value of b 
that you would prefer if you were a passenger in the car. 

Problen1 2.4 The input to the translational mechanical system shown in 
the following diagram is the displacement X3 ( t) of /,he Tight end of the spring 
k1 . The absolute displacements of m 1 and m2 are x1 and x 2 , nspectively. 
The forces exeTted by the springs are zero when x 1 = x 2 = x 3 = 0. 
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Translational Mechanical System 

(a) Draw the free-body diagrams of the system,. 
(b) Obtain the system dynamic equations of motion. 

Problem 2.5 Consider the mechanical and the electrical systems shown in 
the following diagrams. 

T 
y 

(a) (b) 

(a) Obtain the transfer function of the mechanical system, where xi(t) is 
the input and X 0 ( t) is the output. 

(b) Obtain the transfer function of the electrical system, where Vi ( t) is 
the input and V 0 (t) is the output. 

(c) Show that the transfer functions of the two systems have an ident·ical 
form and are thus analogous. 

Problem 2.6 In the following mechanical system the input is a force f(t) 
and the output is the spTing force in k2. 
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~I 

~I 
f(t) 

1~'anslational Mechanical System 

(a) Draw the fret-body diagrams for the mass Tn an.d for /.he massless 
point A. 

(b) WTite down the eqv.ations of motion. 
(c) Choose the minimum number of state variables jirr the system and 

de'l'dop the state-variable matrix model (i.e. obtain A, 
(d) If the dashpot b2 is Temoved show that 

1 
X3 k3 [(k2 + k3)X2- k2x1]. 

Choose a new set of independent state variables for this new system and 
develop the state-variable matTi:r model (i.e. obtain A, B, C, D). 

Problem 2. 7 In the following tmnslational mechanical system the input 
is f(t) and the output is /;he force in spring k3 . 

~ 1 ~I 
j=}~:~.---m----, 
4---- u bl 

Translational Mechanical System 

(a) Draw the free-body diagrams joT the mass m and the massless point 
A. 

(b) Write down the system eqnations of motion 
(c) Choose the minimum set of state variables for the system and develop 

the state-variable m.atri:r model (i.e. obtain A, B, C and D). 

Problern 2.8 For a certain dynamic system the state-1wriable equations 
joT the position x 1 and velocity v1 are given below: 

=VI 

1 
i11 = -[-(k1 + k2)x1- bv1 + bx2 + (t), 

m1 
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where x 2 ( t) is the input and the output is x 1 . Use the s-opemtor to obtain 
the input-mdp1d differential equation which relates the output ::r: 1 and the 
input x2 (t). 

Problem 2.9 Consider the following mechanical system. 

~-1 
~I 
f(t) ,-------, 

-~ 

Is 

Translational Mechanical System 

The forces exerted by the springs an zero when x1 = :r:2 = X3 = 0. The 
input force is j(t) and the absolute displacements of m 1 , m2 and m3 arc 
:r1, xz and X3, respectively 

(a) Draw the free-body diagmrns of the system. 
(b) Obtain the syst.em dynamic equations of motion. 
(c) Choose a suitable vector of state variables and justify your choice. 
(d) Express the dynamic equations in the state-1mriable matrix form (A, B, C, D), 

where the output is the spring force in 

Problem 2.10 The following data is provided for the tran.slationo.L me-
chanical .sysl.cm considered in Problem 2. 9. 

m1 = 5kg 
m2 = l5kg 
m3 = 50kg 

b1 = 500N/m/s 
b2 = 600N/m/s 
k1 = 5, OOON /m 

= lO,OOON/m 

Use MATLAB to find the following: 
(a) The output response (y) to an input force of 50N 
(b) The response to u.n impulse force ·input. 
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(c) If the values of b1 and b2 weTe vaTiables choose values of b1 and b2 

that will Teduce oscillations, give practical settling time, and produce smooth 
Tesponses. 

If the output was the platfoTm displacement x3 , obtain the new matrices 
C and D. 

(a) Find the output response (y) to an input force of 50N 

(b) Find the responBe to an impulse force input. 

(c) If the values of b1 and b2 were variables choose valv.es of b1 and b2 

that will reduce oscillations, and give practical settling tirn.e and sm.ooth 
Tesponscs. 

Problem 2.11 In some mechanical positioning systems the movement of 
a large object is contmlled by manipulating a much smaller object that is 
mechanically coupled with it. The following diagram depicts such a syste·m, 
where a force u(t) is applied to a small mass m in order to position a largeT 
mass M. The coupling between the objects is modeled by a spring constant 
with a damping coefficient b. 

~I 
u m 

(a) Draw the free-body diagrams of the system 

(b) Write the equations of motion governing this system. 

(c) Identify the appropriate state variables, and express the equations of 
motion in the state-variable matTix form (A, B, C, D). 

Problem 2.12 In the following rotational mechanical system there is a 
driving torq11e T(t) exeTted on disk J 1 and a load torque TL(t) e:rerted on 
disk J2 . Both the applied torque T(t) and the load torque TL(t) aTe consid-
ered as inputs and the ou.tput is the angular velocity w3 ( t). 
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··. ·.co_, 

Rotational Mechanical System 

(a) Draw the free-body diagrams for the system. 
(b) Explain why the vector of state variables can be chosen as 

(c) Express the dynamic equations in state-variable matrix form (i.e. 
obtain A, B, C, D). 

(b) Use the s-operator method to express the dynamic equations in the 
form of an ·input-ov.tput differential equation. 

Problem 2.13 The diagram below shows a double pendulum system. As-
sume the displacement angles of the pendulums is small enough to ensure 
that the spring is always horizontal. The pendulum rods are taken to be 
massless, of length l, and the springs are attached 2/3 of the way down. 

m m 

Double Pendulum 

Derive two differential equations that model the motion of the double 
pendulum. 

Problem 2.14 Consider the RLC electrical circuit given below, where the 
input is current i 1 (t) and the output is voltage v0 (t). 
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.------,-----,-----,-------0+ 

c R L 
i. (t) 

I 

L-----~----~----~--------o-

An RLC Electrical Circuit 

(a) Find the state-var'iable model (A, B, C, D) for the circuit. 
(b) Show that the input-output differential equation is given by 

145 

Problem 2.15 In the figure below, determine the input-output differential 
equation of the circuit. 

.--+-- + 

Problem 2.16 Find the input-output differential equation relating V0 and 
Vi ( t) for the circuit shown below. 

+ 
R 

L 
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Problem 2.17 (a) For the following circuit find the state-variable matrix 
model (A, B, C, D) where v0 is the output voltage and Vi is the input voltage. 

Lt 
Rt 

+ + 
vi (t) Rz Vo 

-

Lz 

(b) Also find the input-output differential equation for the system. 

Problem 2.18 Consider the following circuit where i; ( t) is the input cur-
rent and i a ( t) is the output cuTTent. 

+ 
cl 

J-~ + 
i. (t) 

1 

c2 

c 

(a) Obtain the state-variable matrix ·model (A, B, C, D) joT the circuit. 
(b) Obtain the input-oulput differential equation for the circuit. 

Problem 2.19 for the following op-amp circuit derive the algebraic ex-
pression for the output voltage v0 in terms of the two input voltages ·u 1 ( t) 
and v2 (t). Iwi'icate what mathematical operation the circuit performs. 
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Problem 2.20 (a) For the follow·ing op-amp circuit derive the input-output 
differential equation relating the output voltage v0 and the input voltage 
Vi ( t), 

(b) Derive the circuit's state-variable matrix model (A, B, C, lJ), where 
the input is voltage v;( f,) and there are two outputs,· the volt:age output v0 , 

and the c11rrent thmugh R 3 (with positive sense to the ·right). 

Problem 2.21 Consider the following op-amp circnil where the ouLpnt is 
voltage V0 ( t) and the input is voltage Vi ( t). 
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+ 

(a) Choose a set of state variables and justify your choice. 
(b) Obtain the state-variable matrix model (A, B, C, D) for the system. 



Chapter 3 

Dynamic System Response 

3.1 Introduction 

In order to design a control system it is essential that the behavior of the 
plant (or process) be analyzed and understood. In the process of analyzing 
a system, two tasks must be performed: modeling the system and obtaining 
the dynamic system response. The first task wat> accomplished in Chapter 
2 and the dynamic system response is obtained by solving the differential 
equations that constitute the system model. Once the system response is 
obtained, the function of a controller in a control system is then to influence 
the system response or behavior of the plant. The objective of this chapter 
is to develop techniques for finding the system responses for the dynamic 
systems modeled in Chapter 2. This activity is also called solving the model 
and involves using the mathematical model to determine certain features 
of the system cause-and-effect relationships. 

Three main mathematical approaches are used to obtain the system re-
sponse: direct solution of differential equations in the time domain, the use 
of the Laplace transform to solve differential equations in the frequency 
domain, and the deduction of system behavior from the system transfer 
function. The Laplace transform is a mathematical tool for transforming 
linear differential equations into an easier-to-manipulate algebraic form. In 
this domain, the differential equations are easily solved and the solutions 
are converted back into the time domain to give the system response. The 
transfer function was introduced in Chapter 2 as a modeling tool. The 
major advantage of this form of the dynamic system model is that the sys--
tem response can be easily obtained from it. }'rom the transfer function 
the system poles and zeros can be identified and these provide information 
about the characteristics of the system response. The location of the poles 
and zeros can then be manipulated to achieve certain desired characteris-
tics or eliminate undesirable ones. In addition to the direct mathematical 
derivation of the transfer function, there are two visual tools that can be 

149 
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employed to derive it. The first is the block diagram, which was introduced 
in Chapter 2 and the other is the signal flow graph. The latter method 
consists of characterizing the system by a network of directed branches and 
associated gains (transfer functions) connected to nodes. Mason's rule is 
used to relate the graph to the algebra of the system simultaneous equa-
tions, thus determining the system transfer function. 

Instead of using analytic methods to determine the system response in 
certain circumstances it is more feasible to use numerical methods. The 
type of equation involved in the model has a strong influence on the extent 
to which an:1lytic:al methods can be used. For example, nonlinear differen-
tial equations not often solved in closed form, and the solution of partial 
differential equations is far more laborious than that of ordinary differen-
tial equations. Computers can be used to generate the responses to specific 
numerical cases for complex models. However, using a computer to solve 
a complex model has its limitations. Models used for computer studies 
should be chosen with the approximations encountered in numerical inte-
gration in mind and should be relatively insensitive to system parameters 
whose values are uncertain or subject to change. It must not be forgotten 
that the model being analyzed is only an approximate mathematical de-
scription of the system, not the physical system itself. When an analytical 
model is not available or is too complex to formulate the system behav-
ior, it can be established from both experimental time-response data and 
frequency-response data. The development of models from experimental 
data is presented in Chapter 2. 

3.1.1 Objectives 

After finishing this chapter the reader should be able to accomplish a 
number of tasks. Given a mathematical model (or after deriving a model) 
for a dynamic system, the reader should be able to do the following: 

• For the first or second-order system model, solve the differential equa-
tions directly to determine the system response 

• For a dynamic model use the Laplace transform to 
a) find the complete time response 

b) determine the transfer function, its poles and :ocros 

c) analy:oe stability, evaluate time constants, damping ratios, and un-
damped natural frequencies 

111 Use the transfer function to determine system response 

~~> Use the Block diagram and Signal flow graph to determine the transfer 
function 
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• Find and analyze the impulse response, step response, and sinusoidal 
response 

• In addition to using analytical methods, use numeric methods to ob-
tain the system response of a linear or nonlinear model in numerical 
form 

• Determine the system response from experimental data 

3.2 Time Domain Solution of System Models 
The dynamic response of a system can be determined directly in the time 

domain without any transformation. The starting point is expressing the 
system model in the input-output differential equation form, with all other 
variables eliminated. Consider the general n-th order model 

aoy +ad;+ a2ii + ... + any(n) = bou + b1u + b2u + 
(3.1) 

where 

The terms on the right-hand side that involve the input and its derivatives 
constitute the forcing function 

With this definition the input-output differential equation model can be 
expressed as 

. .. (n) j(t) aoy + a1y + a2y + ... +any = . (3.2) 

The desired solution y(t) fort 2:: 0 must satisfy the input-output differential 
Equation 3.2. 

3.2.1 Homogeneous Input-Output Equations 
If f(t) = 0 in the input-output Equation 3.2 i.e., neither inputs nor 

their derivatives are present, then the equation is called a homogeneous 
differential equation, 

(3.3) 
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The corresponding characteristic equation for this system is given by 

(3.4) 

which has roots r 1, r 2 , r3 ... , Tn. Hence, the solution of Equation 3.4 takes 
the form 

n 

= LK.,er't, 
i=l 

where the terms Ki are real constants. 

(3.5) 

If two or more of the roots are identical (repeated roots) then Equation 
3.5 is modified as follows: 

for r 1 = r 2 . If any of the roots are complex conjugates (r1 = a+ jB and 
r 2 =a- j(3), the solution of Equation 3.4 can be expressed in three related 
forms 

Yh(t) = K1e(cx+j{3)t + K2e(cx-j{3)t 

= eat (I( 3 cos (3t + K4 sin (3t) 
= K ef3t cos((3t + ¢), 

where ¢ is a constant angle. Hence, in order to find the solution for any 
given homogeneous input-output differential equation with complex roots, 
the constants K 1 , K 2 , a and (3 must be determined (K3, K4, K and ¢ 
depend on the first four constants). 

Example 3.1 Consider a fir-.st-order system with no input sv,ch that the 
input-output differential equation is given by 

Find its system response. 

Solution 3.1 The characteristic equation is given by 

r + 3 = 0 :::::? r = -3 

=:::::? Yh(t) = K e-3t. 

This is the system response, where K is a real constant, and thus the re-
sponse represents a fmnily of cur-ves. 
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3.2.2 Nonhomogeneous Input-Output Equations 

When the forcing function is not zero, i.e., f(t) =f. 0, the equation is called 
a nonhomogeneous input-output differential equation. Its solution y(t) is 
called the complete solution (or general solution) and it consists of two 
parts; the homogeneous solution Yh(i) and the particular solution 
Yp(t) such that 

y(t) = Yh(t) + Yp(t). 

The homogeneous solution must satisfy the homogeneous equation, 

while the particular solution must satisfy the entire differential equation, 

. .. (n) J(t) aoy + a1y + a2y + ... +any = . 

The procedure for obtaining the homogeneous solution Yh(t) has already 
been explained. A general method of obtaining the Yp(t) involves the vari-
ation of parameters procedure. When the forcing function f(t) has only 
a finite number of different derivatives, the method of undetermined co-
efficients is sufficient. This method assumes that the form of Yp(t) con-
sists of terms similar to those in f(t) and their derivatives. Each of the 
terms and derivatives is multiplied by coefficients that must be deter-
mined. Some common forms of particular solutions are listed in the table 
below. 

f(t) Yp(t) 

(3 b 

0:1t+o:o at+ b 

eat a eat 

coswt acoswt + bsinwt 

sinwt acoswt + bsinwt 

If f(t) or one of its derivatives contains a term identical to a term in 
the homogeneous :oolution Yh(t), the corresponding term::; in the right-hand 
column of the table above should be multiplied by t. For example, if 
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then 

should be used. If a term in f(t) corresponds to a double root of the 
characteristic equation the normal form for Yp(t) is multiplied by t 2 . For 
example, if 

then 

should be used. It is important to note that when solving for the complete 
or general solution 

y(t) = Yh(t) + Yp(t), 

the arbitrary constants K 1 through Kn cannot be evaluated until both Yh(t) 
and Yp(t) have been found. 

The two parts of the complete solution have physical significance. The 
homogeneous solution Yh(t) represents the natural behavior of the system 
where there are no external inputs i.e . .f(t) = 0. 

Yh(t) = Free response. 

The particular solution depends on the form of the forcing function. 

Yp(t) = Forced response. 

Example 3.2 Consider a first-order system with a forcing .function .f(t) 
such that input-output differential equation is given by 

iJ + 3y = .f ( t)' (3.7) 

where y(O) = 1. Find the dynamic system response y(t) .for the following 
forcing functions: 

(a) .f(t) = 5 
(b) .f(t) = 5cos2t. 

Solution 3,2 The characteristic equation is obtained by inspecting the LHS 
of Equation 3. 7, 

r+3 = 0 * r = -3 

==;. Yh(t) = Kc-3t. 
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The value of K depends on f(t) as well as y(O) and hence it will be different 
for the two cases. 

(a) For f(t) = 5, let the particular solution be given by 

Yp(t) =b. 

Substituting f(t) = 5 and Yp(t) = b in Equation 3. 7 leads to 

y + 3y = f(t) 
db 

==? dt + 3b = 5 

==? 0+ 3b = 5 
5 

==? b= 3' 
The complete solution then becomes 

y(t) = Yh(t) + Yp(t) 
5 = Ke-3t + -. 
3 

(3.8) 

The value of K is then obtained by using the initial condition, y(O) = 1, in 
Equation 3. 8. 

5 
y(O) = Ke- 3 x 0 +- = 1 

3 
5 

=?K+ 3 =1 

2 
==* K = -3. 

Therefore, the system response is given by 

( 2 -3t 5 
y t) = -3e + 3' 

(b) For the second case f ( t) = 5 cos 2t, hence, the particular solution is 
of the form 

yp(t) = acos2t+bsin2t. 

Substituting f ( t) = 5 cos 2t and Yp ( t) = a cos 2t + b sin 2t in Equation 3. 7 
leads to 

y + 3y = f(t) 

:t (a cos 2t + b sin 2t) + 3 (a cos 2t + b sin 2t) = 5 cos 2t 

-2a sin 2t + 2bcos 2t + 3a cos 2t + 3b sin 2t = 5 cos 2t 

(3b- 2a) sin 2t + (2b + 3a) cos 2t = 5 cos 2t. 
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Collecting coefficients gives two simultaneous equations 

(3b-2a)=O 
(2b+3a)=5 

10 
=?b=-

13 

The complete solution then becomes 

y(t) = Yh(t) + Yp(t) 

15 
and a= 13 . 

= Kc~ 3t + c~ cos2t+ ~~ sin2t). 

The value of}( is then obtained by using the initial condition; y(O) = 1. 
Hence, 

( 15 10 ) y(O) = Ke0 + 13 cosO+ 13 sinO = 1 

T (15) ==? [\ + 13 = 1 

2 
==? }( = --. 

13 

Therefore, the system response is given by 

2 ( 15 10 ) y(t) = - 13 e~ 3t + 13 cos2t + 13 sin 2t 

= -~ (2e~ 3 t -15cos2t -10sin2t). 
13 

3.2.3 First-Order Systems 

Consider a general first-order differential equation 

. 1 
y + -y = f(t), 

T 

where r is a real non-zero constant called the time constant. All first or-
der differential equations can be expressed in this form. The characteristic 
equation is obtained by inspection from the homogeneous differential equa-
tion, 

. 1 
y + -y = 0 

T 

1 
==?r+-=0 

T 
1 * r = --. 
T 
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The homogeneous response is thus given by a family of curves of the form 

where K is a real constant. 

t 
Yh(t) = Ke T, 

3.2.3.1 Stability Analysis 

The stability of the family of curves can be established as follows: 

T > 0 ===} A stable system. 

T < 0 ===} An unstable system. 

T ----. oo ===} A marginally stable system. 

yh 

Stable system 
"t" >0 

K ~------------

FIGURE 3.1 

Marginally 
stable system 

yh=K 

Unstable system 
"t" <0 

First-Order System Response: Stability Analysis 

The complete dynamic system response can be interpreted as consisting 
of a transient response and a steady state response. For stable systems 
the transient part consists of terms that decay to zero as t approaches oo. 
The steady state response is the part that remains after transient terms 
have decayed to zero. For the first-order system, as discussed before, the 
complete response is given by 

y(t) = Yp(t) + Yh(t) 
t 

where Yh(t) = Ke T. 
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The homogeneous response Uh(t) is also called the transient response, and 
if T is positive, the system is stable. The particular solution yp(t.) then 
represents the steady state response, where yp(t) can be a variety of func-
tions (e.g., (3, acoswt + bsinwt or at+ b). However, if yp(t) is of the form 
ate-t + be-t, then it becomes part of the transient response. For stable 
systems whose Yr(t) terms do not clecayto zero the parts of the complete 
response are summarized as follows: 

Yh ( t) == Transient response == Free response. 

Yp(t) =::: Steady state response== Forced response. 

3.2.3.2 The Complete Response to a Constant Input 

The system response for the special case where the input to a first-order 
system is a constant, can be simplified into a form that is easily obtained 
without explicitly finding Yh ( t) and Yp ( t) separately. Consider a first-order 
system with a constant input f(t) = (3, 

0 1 (3 y+ -y = . 
T 

The homogeneous and particular solutions are given by 

such that 

Y = Yp(t) + Yh(t) 
t 

-

=T{-J+Ke T. 

(3.9) 

The particular solution Yr(t) can be taken as the steady state response such 
that 

Yp(t) = Yss 
t 

-

=?u(t)=Yss+Ke T. (3.10) 

If the initial value of the response y(O) is known, the constant K can be 
expressed in terms of it, 

y(O) = Yss + Ke0 

::::? K = y(O)- Yss· 

Substituting this expression of K in Equation 3.10 leads to 

t 
y(t) = Yss + [y(O)- YBs]e T. (3.11) 
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Hence, for any first-order system with a constant input (or a constant forc-
ing function) the system response can be obtained from Equatiou 3.11. The 
task is thus reduced to finding the steady state value Yss and the time con-
stant T, where the initial value y(O) is known. The term Yss is obtained 
by setting the derivative y to zero, and T is the inverse of the coefficient 
of y(t) in the first-order Equation ::l.9. Equation 3.11 is important because 
it allows the direct determination of the complete system response without 
establishing the homogeneous and particular solutions separately. 

Example 3.3 Find the dynamic system. response for the spring mass damp-
ing system shown below, where f(t) = /3, x(O) = 0 {i.e. there is no initial 
energy stored). 

f(t) 

A First-Order Translational Mechanical System 

Solution 3.3 From the system free-body diagram 

bx + kx = f(t) 
k 1 

x+-;-x=-f(t) 
() b 
k f3 x + -x = :__ 
b b 0 

(3.12) 

From Equation 3.12 the t'irne constant T and steady state valv,e X 88 can ue 
obtained. 

j3 
=?Xss=y;· 
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Therefore, the system response can be obtained from Equation 3.11. 

t 

x(t) = X 88 + [x(O) - X 88 ]e T 

-kt 
/3 [ /3] -x(t) = k + 0- k e b 

-kt 
/3 /3 -

=-- -e b 
k k 

= ~ 1- e-b-[ 
-ktl 

(3.13) 

Example 3.4 Find the dynamic system response for the rota,t·ional me-
chanical system shown below. There is a constant input angular speed, 
w(t) = /3, and zero initial angular speed, w1(0) = 0 (i.e. there is no initial 
energy stored). 

ojt) 

,0) 
1 

Negligible Inertia 

2 

A First-Order Rotational Mechanical System 

Solution 3.4 From the system free-body diagrams 

where w(t) = /3. 

From this equation the time constant T and steady state value X 58 can be 
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obtained as follows: 

J 
T=---

bl + bz 

b!(J 
==} wlss = bl + b2 . 

Therefore, the system response can be obtained from Equation 3.11 as 
follows: 

t 

W1 (t) = Wlss + [w1 (0) - Wios]e T 

b!(J --
[ t l = b1 + bz 1 - e 7 

J 
where T = ---. 

bl + b2 

This is the system response of the rotational mechanical system. 
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Example 3.5 Consider the electrical circuit shown below where vi(t) = {3, 
fort :::>: 0. Find the dynamic system response v0 (t). 

+ 

+ 
v.(t) 

1 

A Fir-st-Order Electrical System 
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Solution 3.5 The starting point is determining the input-output differen-
tial equation model. This is done by using the KVL and KCL. 

R2R3 . 
where Rr = R R (parallel reszstors) 

2 + 3 

(3.14) 

This is a first-order system with a constant input, and hence the system 
response is of the form 

t 
va(t) = Vo •• + [vo(O+) - Va •• ] e- T, (3.15) 

where the time constant is the inverse of the coefficient of v0 (t) in Equation 
3.14 and va.. is the steady state value obtained by setting the derivative 
v0 (t) to zero in the same equation. The term v0 (0+) represents the initial 
value of the output voltage approached from positive time. 

R1RrC 
T=---

Rl+Rr 

Rrf3 
Voss = Rl + Rr. 

The initial value v0 (0+) is obtained by using the KVL, the initial input 
voltage and the initial voltage across the capacitor. 

Vi(t)- vc(t)- va(t) = 0 

====* Va(t) = Vi(t)- vc(t) 

====* va(o+) = vi(o+) - vc(o+) 

but vc(o+) = vc(o-) = 0 and vi(o+) = (3 

====* va(o+) = (3- 0 

====* va(o+) = (3. 

The dynamic system response is then obtained by substituting the deter-
mined expressions ofT, va •• and V0 (0+) in Equation 3.15. 
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3.2.4 Second-Order Systems 

A general second-order system can be represented as follows: 

Y + a1i; + aoy = f(t) 
Y + 2~WnY + w;y f(t), 
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where Wn is the undamped natural frequency and t; is the clamping ratio. By 
inspection of these equations the characteristic equation can be determined. 

r 2 +a1r+ao=O 

r 2 + 2~wnr + w; = 0. 

(a) If ~ > 1 ===? roots are distinct and negative, Yh has two decaying 
exponential components. 

(b) If~= 1 ===?repeated root, r = Wn, Yh(t) =terms of the form e-wnt 
and te-wnt. 

(c) lf 0 < ~ < 1 =?complex roots. 

(d) The complex roots are given by 

(e) With the complex roots the particular solution is given by 

= ecxt [K1 cospt + Kz sinf3t] 

= K eo:t cos(f3t + ¢). 

(f) rf ~ < 0 ==? the system is unstable. 

Example 3.6 The system shown below obeys the differential equat·ion 



164 Design and Analysis of Control Systems 

I~ 

/Ideal 
/ pulley 

A Second-Order Translational Mechanical System 

(a) Verify that the differential equai'ion is correct. 

(b) Find the expressions for the damping coefficient ~ and the undamped 
natural frequency Wn. 

(c) Find the steady state response when the force is a step unit function 

Solution 3.6 (a) Verification of the differential equation fmm the free-
body diagrams 

(m1 + mz)x + (h + bz)x + k2x = f(t)- m2g 

(b) 

(by adding the 2 equations). 
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(c) 

3.2.5 Analogous Mechanical and Electrical Systems 

Translational, rotational, and electrical systems can be shown to manifest 
the same dynamic behavior and hence their models can be used interchange-
ably. Consider the four second-order systems shown in Figures 3.2, 3.3. 3.4, 
and 3.5. 

~I 

m f(t) 

FIGURE 3.2 
A Translational Mechanical System 

) T (t) 

FIGURE 3.3 
A Rotational Mechanical System 

Using free-body diagrams and circuit laws (current and voltage) it can 
be shown that the input-output differential equations for the four systems 
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+ 

FIGURE 3.4 
An RLC Series Circuit 

i· I 

FIGURE 3.5 
An RLC Parallel Circuit 

are given by: 

" bl . kl 1 f( ) x+-x+-x=- t m m m 

The d~rivation of these models is left as an exercise for the reader. By 
comparing these models with the standard second-order model 

the expressions for the respective natural frequency and damping ratio can 
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be determined. 

and 

fl t= R1 (C; 
Wn = y L;C; and c, 2 y L; 

w /1 and t - - 1- {L; 
n = V L;C; <., - 2R2 V G;. 
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The four mechanical and electrical systems are said to be analogous be-
cause they satisfy the same general second equation, which means that 
they manifest the similar dynamic properties. 

3.2.6 Solution of State-Variable Matrix Equations 

The matrix state-variable form of the dynamic system model can be 
solved in the time domain. Consider the general state-variable form 

x= Ax+Bu 

y= Cx+Du. 

The homogeneous (zero input) response is obtained by setting the inputs 
to zero such that 

x=Ax 
y=Cx. 

The solutions or responses of the state variables are obtained from the 
equation 

x(t)= ¢(t)x(O) 

The function ¢( t) is called the state-transition matrix defined by 

¢(t)=eAt 

= O:ol + 0:1A + 0:2A 2 ...... + O:n-1A n-1, 

where a 0 to an_ 1 are scalar coefficients and x(O) is a vector of the initial 
values of the state variables. The characteristic values (or eigenvalues) of 
A are values of). for which 

1>-I- AI= 0. 

This is called the system characteristic equation. 
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Example 3. 7 For a system that has two state variables such that 
T T [x1 x2] , x(O) = [1 1] and 

find the state variable responses ,T 1 (t) and x2 (t). 

Solution 3. 7 First, the eigenvalues arT determined. 

IAI- AI= 0 

=? A(A + 3)- ( -1 X 2) = 0 

==? A 2 + 3A + 2 = 0 

The order of A is 2, which means the power series for eAt contains only 
two terms, such that 

16) 

Replacing A in Equation 3.16 by the eigenvalw;s ). 1 and ).2 produces two 
scalar equations 

Solving for ao and a 1 gives 

-t e = CY0 - CYJ 

e-Zt = ao- 2al. 

ao = 2e-t - e-2t 

al = e-t - e-2t 
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Substituting in the expression for eAt leads to 

eAt= a 0 I + a1A 

~a+:] +a1 [ :2 ~3] 
[ ao 0 ] [ 0 a, j 

0 ao + -2a1 -3al 

[ ao 
a1 

j -2a1 ao- 3al 

[ z,-•- ,-" e-t _ e-2t 

= -2 ( e-t - e-2t) (2 -t -2t) 3 ( -t -2t) e -e - e -e 

[ z,-•- ,-" e-t _ e-2t 

j -2 ( e-t - e-2t) -e-t + 2e-2t 

] 

Therefore,the system response (for the two states) is obtained by 

x(t)= eAtx(O) 

[ z,-•- ,-" e-t _ e-2t 

]m = -2 (e-t- e-2t) -e-t + 2e-2t 

[ 3,-• - z,-, l 
= 

-3e-t + 4e-2t 

Therefore, the responses of the two state variables are given by 
x1(t) = 3e-t- 2e-2t 

x2(t) = -3e-t + 4e-2t 

169 
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Example 3.8 A dynamic system is described by the state-variable equa-
tions :X= Ax andy= Cx, where 

and x(O) = [1 2]T. 

(a) Obtain the state-transition matrix ¢(t). 
(b) Find the state variable responses x 1 (t) and x 2 (t). 
(c) Find the outp·ut response y(t). 
(d) For this system verify that 

¢(0) =I 

and ¢- 1 (t) = ¢(-t). 

Solution 3.8 (a) The state-transition matrix is obtained as follows: 

¢(t) =eAt= aai + a1A. 

where a 0 and a 1 are constants obtained from the eigenvalues as follows: 

1>-I- AI= 0 

.\(,\ + 2) = 0 =? .\1 = 0 and .\2 = -2 

1- e-21 
==? 0!0 = 1 and a1 = 2 

Using these values of no and a 1 the state-transition matrix rj>(t) can now 
be determined. 
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(b) The state variable responses are obtained as follows: 

x(t)= ¢(t)x(O) 

: ~:. [~ l [ 
1 -2t 1 

[
2 _ e-2tl· 

2e-2t 

(c) Now for the output response, 

y(t)= Cx(t) 

= [3 -1] [
2 _ e-2tl 

2e-2t 

= 6- 3e-2t - 2e-2t 

= 6- 5e-2t 

(d) The identities are verified by using the determined expression of ¢(t). 

(i) 

¢(0) =I 

LHS = ¢(0) 
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(ii) 
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r: 1:11 

~ [~ : l 
=I 

=RHS. 

¢-1 (t) = ¢(-t) 

LHS = ¢- 1 (t) 

r e~" 1 
(e-2t_o) 

1 
(1- e2t) 

1 
2 

0 e2t 

= ¢( -t) 

=RHS. 

(1 - e-2t) 

1 
2 

1 

Altho'Ugh these two pmperties have been verified for a specific system, they 
are valid for any state-transition matrix cp(t). 
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3.3 Frequency Domain Solution of Models 
3.3.1 The Laplace Transform 
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Difficult mathematical problems can be transformed into equivalent prob-
lems that are easier to solve and the solution transformed back into the 
original framework. Such transformation techniques include Logarithms, 
Fourier series, the Fourier transform, the Laplace transform, and the Z-
trano;fonns. The Laplace transform is a mathematical tool for t.ransforming 
differential equations into an easier-to-manipulate algebraic forrn. In this 
domain the clifTerential equations are easily solved and the solutions con-
verted back into the time domain to give the system response. In this way, 
the Laplace transform is very useful in establishing and analyzing the sys-
tem responses of linear dynamic systems by using relatively easily solved 
algebraic equations instead of the more difficult differential equations. The 
use of Laplace transforms to solve dynamic system models proceeds from 
two forms of the models; the input-output differential equation, or from the 
system transfer function. 

3.3.1.1 Definitions 

The Laplace transform converts a time function into a function of a 
complex variable that is denoted by s. The transform of a function of time 
y(t) is represented by either .C [y(t)] or Y(s) such that 

Y(s) = .C[y(t)], 

where the symbol .C stands for "the Laplace transjorn1. of." One can think 
of the Laplace transform as providing a means of transforming a given 
problem from the time domain, where all variables are functions of t, to 
the complex-frequency domain, where all variables are functions of s. The 
Laplace transformation is defined as follows: 

Y(s) = .C [y(t)] 

= 1: y(t)e-stdt. 

In most applications only the one-sided Laplace transform is essential. This 
transform uses o- ( a value just before t = 0 ) as the lower limit :mch that 

Y(s) = r= y(t)e-stdt. 
Jo-



174 

Time 
Domain 
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s-plane 
{frequency domain} 

Inverse Laplace 

FIGURE 3.6 
Laplace Transformation 

Once the system model has been solved in the s-domain, it is converted 
back into the time domain to the system response. 

l ;·a+jw y(t) =- · Y(s)estds. 
21T a-jw 

In practice, this inverse Laplace transform equation is seldomly used be-
cause it is too complex. Instead, tables of simple inverse Laplace transforms 
are used. Such t.ables are in Appendix A. Figure 3.6 shows a summary of 
the Laplace transformation between the time and frequency domains. 

3.3.2 Properties of Laplace Transforms 

Two attributes of analytical techniques of linear time-invariant systems 
form the basis for their application to dynamic systems: 

• A linear system response obeys the principle of superposition. 

e The response of a linear constant system can be expressed as the 
convolution of the input with the unit impulse response of the system. 

The principle of superposition states that if the system has an input that 
can be expresc;ed as a sum of signals, then the response of the system can 
be expressed as the sum of the individual responses to the respective input 
signals. From the second property it follows immediately that the rc.sponse 
of a linear time-invariant system to an exponential input is also exponen-
tial. This result is the principle reason for the usefulness of Fourier and 
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Laplace transforms in the study of linear constant systems. The properties 
of Laplace transforms can be summarized as follows: 

• Superposition Principle 

Laplace transform are applied to linear systems and hence, obey 
the principle of superposition. 

" Convolution 

y(t) =I: u(T)h(t- T)dT 

where u(t) is the input and h(t) is the impulse response. 

• Scaling Property 

L{ ay(t)} = aY(s ). 

This is a special case of the superposition principle. 

• Differentiation 

d 
- =s dt Differential operator 

L [ d~~t)] = sY(s)- y(O) 

L [v(m)(t)J = smY(s)- sm-ly(O)- sm- 2y(O)- ... - 1)(0). 

• Integration 

J 1 dt =-
s 

Integral operator 

L [! y(t)dt] 
Y(s) 

s 

Multiplication by Time 

L [ty(t)] =- d~;s). 

Multiplication of a function y(t) by time corresponds to differentiating 
the negative of the Laplace transform, -Y(s). 
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3.3.3 Laplace Transform of Some Key Functions 

In order to build an understanding of Laplace transforms, the transforms 
of simple functions are derived in this section. Laplace transforms of some 
key functions are shown the following chart. Complete tables of the trans-
forms and their properties are in Appendix A. 

Number Y(s) y(t), t ?': 0 

1 1 8(t) 

1 
1 ( t) 2 

s 

3 
1 
s2 t 

4 
m! tm 

8 rn+l 

5 
1 e-at 

s+a 

1 te-at 6 
(s+a) 2 

7 
1 

(s + a)m 
1 tm-le-at 

(m- 1)! 

8 
s+a e-at cos bt 

(s + a)2 + b2 

9 
b e-at sin bt 

(s+a) 2 +b2 

(a) Step Function. 

This is a function that is constant for t 2: 0 as shown in Figure 3. 7 and 
Figure 3.8. 
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y(t) 

a 

FIGURE 3.7 
A Step Function 

y(t) = a 

Y(s) = 1a= (a)e-stdt 

(b) Ramp Function 

a 
s 

177 

t 

This is represented as a line of constant gradient for t ;::: 0 as shown in 
Figure 3.8. 

y(t) = bt 

Y(s) = fooo (bt)e-stdt 

b 
s2' 

bte-st be-st J oo 
-----2-

s s 0 
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Input 

y (t) = 0 (t) 

(a) Impulse 

Input 

a r------------------
y (t) =a 

(b) Step 

(c) Ramp 

~y(t)•bt 
FIGURE 3.8 
Impulse, Step, and Ramp Inputs 

(c) Exponential Function 

y(t) =e-at 

(d) Impulse Function 

e- (s+a)t 

s +a lgc' 

1 
s+a 

This is a spike at the origin of Osee (o- too+) as shown in Figure 3.8. 
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y(t) = 8(t) 

o+ 
= r o(t)dt = 1. Jo-

(e) Sinusoid Function 

y(t) = sinwt 

Y(s) = loo (sinwt)e-stdt 

ejwt - e-jwt 
using sin wt = 2j 

roo ( jwt -jwt) 
Y(s) = Jo e ~je e~stdt 

w 

(f) Pure-Time Delay 

Consider system y(t) delayed by timeT, such that the system is repre-
sented by y1 = y( t - T). Taking Laplace transforms leads to 

Yl(t) = y(t- T) 

£ [y1(t)] = £ [y(t- T)] 

Y1(s) = e-sTY(s). 

The function e-sT represents the Laplace transform of a pure time delay 
function. 
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(g) Differentiation 

.C I dy(t)] = sY(s)- y(O) l dt 

For example, consider y(t) = sinwt 

£I dy(t)] = s.C (sinwt)- sinO l di. 

-sl w J-o - ls2 + w2 
sw 

The result can be checked by taking the derivative fir::;t, and then taking 
the Laplace transforms. 

dy(t) d(sinwL) -- = = wCOSwt. dt dt 
ldy(t)] Therefore, £ l--;{t = w.C [cos wt] 

(same result as before) 

(h) Integration 

For example, consider y(t) = coswt 
8 Y(s) = ,, 2 s- +w 

The result can be checked by taking the integral first and then taking the 
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Laplace transforms as follows: 

1t 1 
cos WTdT = - sin wt 

0 w 

[ 1 ] 1 Therefore, ,C :; sin wt = :; ,C (sin wt) 

1 
(same result as before). 

(i) The Differential Operator. 
The s-operator can be considered as the differential operator. 

d 
8=-

dt 

(j) The Integral Operator 

Y( ) - dy(t) 
==} 8 s - dt 0 

The ~ operator can be interpreted as the integral operator. 
s 

Example 3.9 Find the Laplace tmnsform of the function 

y(t) =a sin2 t + (3 cos2 t. 
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Solution 3.9 Using the half angle formula and rewriting the result leads 
to 

y(t) = a sin2 t + (3 cos2 t 

-CY ---- + -+--· . - . ( 1 cos 2t ) (3 ( 1 cos 2 t ) 
2 2 2 2 

Therefore, 

y s - Ct.L - - -- + .L - + -- 0 
( ·) -· f' ( 1 cos 2t) (3 f' ( 1 cos 2t) 

2 2 2 2 
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From the Laplace tables it follows that 

y - (_3:_ - 8 ) (_3:_ 8 ) 
(s)-o: 2s 2(s2 +4) +,6 2s+2(s2 +4) · 

Rearranging the terms 

Y(s) = a+,G + ,6-a (-s-). 
2s 2 s2 + 4 

Use of Laplace transforms to solve dynamic system models proceeds from 
two forms of the models; the input-output differential equation, or from 
the system transfer function. The two approaches are related because the 
transfer function is defined as the output in Laplace divided by the input in 
Laplace. Both require taking inverse Laplace transforms of partial fractions. 
In the next subsection the techniques that are used to deal with partial 
fractions are discussed and then the determination of the system response 
by the two methods is developed. 

3.3.4 Partial Fractions 

Transfer functions can be expressed in terms of partia.l fractions, whose 
inverse Laplace transforms can be easily obtained from the Laplace trans-
forms tables. 

H(s) = Y(s) 
R(s) 

bosrn + b1sm-l + b2sm- 2 + ... + bm 
aosn + alsn-l + a2sn-2 + ... +an 

= J(ITJ.n(s- zi) 
II1(s- Pj) 

C1 Cz Cn 
=--+--+ ... +--, 

s - Pl s - P2 s - Pn 

where {Ci} are coefficients obtained by using the cover up method: 

= (s- p,)H(s)is=pi· (3.17) 

The nature of the partial fractions depend on the type of roots. There 
are three general categories of roots and they will be discussed through 
examples. 
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(a) Distinct Real Roots. 
These roots consist of real numbers and they are all different, i.e., there 

are no repeated roots. 

Example 3.10 Express the following transfer function in terms of partial 
fractions 

H ( s) = ( s + 7) ( s + 4) . 
s(s + l)(s + 3) 

Solution 3.10 The transfer function can be expressed in tenns of three 
partial fractions 

H(s) = (s + 7)(s + 4) 
s(s + l)(s + 3) 

The coefficients are obtained using the cover-up method. 

C1 = (s- Pl)H(s)ls=p1 

(s + 7)(s + 4) I 
= 8 X s(s + l)(s + 3) s=O 

= (s+7)(s+4)1 
(s + l)(s + 3) s=O 

28 
3• 

C2 = (s- P2)H(s)ls=p2 

= s+l x ....;.,_._...:.,..:., _ ___..:,_ ( ) ( 8 + 7) ( s + 4) I 
s(s + l)(s + 3) s=-1 

= (s + 7)(s + 4) I 
s(s + 3) s=-1 

6x3 
-1 X 2 

= -9. 
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C3 = (s- P3)H(s)ls=p3 

(s+3)x (s+7)(s+4) I 
s(s + 1)(s + 3) s=-3 

( s + 7) ( s + 4) I 
s(s+1) s=-3 

4 X 1 
-3 X (-2) 

2 
3' 

Therefore, the transfer function in partial fractions is given by 
28 9 ~ 

H(s) = .l--- + - 3 -. 
s s+l s+3 

(b) Distinct Complex Roots 
These occur when the roots consist of complex numbers and they are all 

different, i.e., there are no repeated roots. 

Example 3.11 Express the following transfer function in terms of partial 
fractions 

2 
H(s) = . 

s(s2 + s + 2) 

Solution 3.11 The transfer function can be e:rpressed in terms of paTtial 
fractions as follows: 

2 H ( s) - --,,------.,.-
- s(s2 + s + 2) 

C1 C2s + C3 
=- + ---:::-=--"-

s s 2 + s + 2 
where cl is obtained by using the cover-up method 

C1 = (s- PI)H(s)ls=pl 

= s x s(s2 +2s + 2) ls=D 

= (s2+2s+2)1s=O 

=1. 
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The constants and C3 are obtained by eq·uatinq the original transfer 
function to its partial fmctiun fonn (with the computed value of C\) and 
then comparing coefficients of the powers of s. 

2 1 C2s + C3 
~~----~= -+~------
s(s2 + s + 2) s s2 + s + 2 

2 

s(s2 +s+2) 
(s2 + s + 2) + C2s2 + sC3 

s(s2 +s+2) 

C2=-l andC3=-l. 

Therefore, the transfer function in partial fmct·ions ·is given by 

1 s + 1 
H(s) = --;- s2 + s + 2 

Complex roots occur in conjugate pairs 

Pl = a+ jb and pr = a- jb. 

Hence, the above transfer funchon (which has a conjugate pair of poles) can 
be expressed in terms of complex partial fractions as follows: 

where 

2 
II ( s) = ---,----,,-------,-

s(s2+s+2) 

2 
s(s- PI)(s- pi) 

c1 c2 c3 =-+--+--*, s s- P1 s- P1 

1 . * l .V? 
Pl = -2 + J2 and Pl = -2- .J2. 

This is an alternative way of expressing a Laplace function that has complex 
roots ·in partial fractions. The constants C1, C2 and C3 are then determined 
by the cover-up method. For any function with a complex conjugate pair of 
poles, it can be shown that the two constants C 3 and C2 are also cornple:r 
conjugates, i.e., 

Hence, only one of them needs to be determined. 
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(c) Repeated Roots 

A repeated root p1 , occurs when there are multiples of the factor ( s- pi). 
The constant Ci for a factor (s- pi) with multiplicity k is given by 

where i = 0, ... , k- 1. 

Example 3.12 E2:press the following transfer function in terms of partial 
fractions 

H(s)- s + 4 
- (s+1)(s+2) 2 

Solution 3.12 The transfeT function can be expressed in terms of three 
partial fractions 

H(s)- s+4 
- (s+1)(s+2) 2 

c1 c2 c3 
= -- + -- + -:----=-:-:::-

s+l s+2 (s+2)2 

The coefficients are obtained as follows: 

s+4 I =(s+1)x( )( )2 
S + 1 S + 2 s=-1 

s+4 I 
= (s + 2)2 s=-1 

= 3. 
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d [ 2 s+4 ] 
= ds (s+ 2) (s+l)(s+2)2 s=- 2 

d [s+4] 
= ds s + 1 s=- 2 

(s+l)-(s+4)1 

(s+1)2 s=-2 

-3 I - ') 

(s + lf s=-2 

= -3, 

C3 = (s- P2) 2 H(s)ls=p2 

( 2 s+4 I 
= s+2) x (s+l)(s+2)2 s=-2 

s+4 I 
= (s+l) s=-2 

= -2. 

Therefore, the transfer function in partial fractions is given by 

3 3 2 
H(s) = s+l- s+2- (s+2)2 

From these partial fraction forms of the Laplace transforms, the inverse 
Laplace transforms are obtained by comparing the partial fraction" with 
those in the standard Laplace transform tables. Thus, for the partial frac-
tion forms in Examples 3.10 and 3.12 the inverse Laplace transforms are 
obtained as follows: 

28 9 2. 
H(s) = _]__- -- + - 3 -

s s+l s+3 
28 2 

h(t) = -- 9e-t + -e-3t 
3 3 

3 3 2 
H(s) = s+l- s+2- (s+2)2 

h(t) = 3e-t- 3e-2t- 2te-2t. 
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For the partial fractions obtained in Example 3.11 (first approach), a special 
technique of completing the square is required to put the second partial 
fraction into a form where the inverse Laplace transform can be deduced 
from the Laplace transform tables. 

3.3.4.1 Completing the Square 

When the denominator of a Laplace transform function is expressed as a 
sum of two squares, the following equations (from Laplace Tables) can be 
used to get its inverse Laplace transform. 

c-1 [ s +a J 
(s + a) 2 + b2 

= e-at cos bt (3.18) 

£ 1 [ b ] 
(s+a) 2 +b2 

= e-at sin bt (3.19) 

c-1 [ a2 + b2 ] 
s [(s + a)2 + b2] 

= 1 -e-at (cos bt + ~sin bt) . (3.20) 

The method of completing the square is a useful technique employed to 
express the denominator of a Laplace algebraic function as a sum of two 
squares. This method involves the two techniques of adding zero to an ex-
pression and multiplying an expression by one. It is very useful when deal-
ing with second-order systems or higher-order systems that can be broken 
down into lower-order functions that include second-order ones. Consider 
the general second-order Laplace transform function given by 

Hs _ ds+c 
( ) - s2 + as + b · (3.21) 

where a, b, c and d are constants. The denominator can be expressed as a 
sum of two squares as follows: 

( a2 a2) 
s2 + as + b = s2 + as + 4 - 4 + b Adding zero 

( a2) a2 = s 2 + as + 4 - 4 + b 

(3.22) 
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This form of the denominator (Equation 3.22) is then used in Equation 3.21 
and the numerator of the result is further manipulated to put the equation 
in the structure of the left-hand side of any of the Equations 3.18, 3.19 and 
3.20. 

H 8 _ ds + c 
( ) - s 2 +as+ b 

ds + c 

c,, %l' + [j(bm :)f Completing the square 

ds + c + ( a2d - ~) 
Adding zero to the numerator 

Multiplication by one 
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The function is now in the form of Equations 3.18 and 3.19 and the inverse 
Laplace transform can be found as follows: 

h(t) = c-1 [ ds + c ] 
s2 +as+ b 

= c-1 

(3.23) 

This is the inverse Laplace transform of a general second-order function. 
Understanding the principles involved in this derivation is very important, 
as these principles are very useful in determining the inverse Laplace trans-
forms of second-order systems in particular those that have complex roots. 

Example 3.13 Using partial fractions, find the time function y(t) of the 
following Laplace functions. 

{a) 

{b) 

Y(s) - ......,.-2---,-
- s(s+2) 

Y(s)- 10 
- s(s + 1)(s + 10) 
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(c) 

(d) 

Y(s)=2s2 +s+1 
s3 - 1 

y s _ 3s + 2 
( ) - s2 + 4s + 20 
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Solution 3.13 in all the four cases, the given function is split into partial 
fractions and then inverse Laplace transformation is applied to get y(t). 

(a) 

(b) 

(c) 

2 
Y(s) = s(s + 2) 

s s + 2 

1 1 
s s+2 

y(t) = 1- c-2t. 

10 y ( s) - --,----,....,----..,... 
- s(s + 1)(s + 10) 

10 . 1 y(t) = 1- -e-t + -e-10t. 
9 9 

2s2 + s + 1 
Y(s) = s3- 1 

i 2s + 1. = _3_ + 3 3 
s- 1 s 2 + s + 1· 
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The next step is completing the square of the denominator of the second 
term. 

.:!. ~s + l 
Y(s) = _3_ + 3 3 

s-1 ( 1)2 1 s+2 -4+1 

The last step is to express the numerator of the second term as a function 

of ( s + ~) so that Equations 3.18 can be used to get the inverse Laplace 

transforms. 

(d) The first step is completing the square of the denominator. 

Y(s) _ 3s + 2 
- s2 + 4s + 20 

3s + 2 
(s+2)2-4+20 

3s + 2 

The next step is rearranging the numerator so that Equations 3.18 and 
3.19 can be used to get the inverse Laplace transforms. This is done by 
expressing the numerator in terms of (s + 2) and 2, by using the technique 
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of adding a zero. 

Y(s) = 3s + 2 + (4- 4) 
(s+2) 2 +42 

3(s+2)-4 
(s+2) 2 +42 

3(s+2) 4 

adding a zero 

(s+2)2+42 (s+2) 2 +42 

y(t) = 3e-zt cos4t- e-zt sin4t 

= e-2t[3cos4t- sin4t]. 

3.4 Determination of the System Response 
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Now that the techniques of partial fractions have been discussed, Laplace 
transforms can be used to determine the dynamic response. This solution 
of dynamic system models proceeds from two forms of the models; the 
input-output differential equation, or from the system transfer function. 

3.4.1 Using the Input-Output Equation 

The procedure of obtaining the system response starting from the input-
output differential equation can be summarized as follows: 

• Obtain the input-output differential equation model. 

• Apply Laplace transformation to this model. 

• Solve the resulting algebraic equations for the Laplace transform of 
the output . 

., Take the inverse Laplace transform of this output. 

Example 3.14 Consider the homogeneous input-output differential equa-
tion, 

y + y = 0, (3.24) 

where y(O) = a and y(O) = (3. 

(a) Find the system response y(t). 
(b) How can this response be verified? 
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Solution 3.14 (a) The system is determined by taking the Laplace trans-
forms of the 

equation. 

.c [:ij + 2y] = .c [0] 

[s2Y(s)- sy(O)- y(O)] + Y(s) = 0 

s2Y(s)- as- f3 + Y(s) = 0 

Y(s)[s2 + 1] =as+ f3 

Y(s) = as+ f3 
s 2 + 1 

as f3 =--+--
s2 + 1 s 2 + 1 

y(t) = .c-1 [Y(s)] 

= a cost + f3 sin t. 

(b) This result can be verified by showing that it satisfies Equation 3.24, 
i.e., 

LHS = jj+y 

d2 [a cos t + f3 sin t] [ f3 . ] 
= . dt 2 + a cost+ smt 

=-a cost- f]sint +a cost+ f]sint 

=0 

=RHS. 

Example 3.15 The car speed cruise control input-output differential equa-
tion is given by 

. b b 
v + -v = -vr, 

m m 
for a step input Vr ( t). The car speed response was obtained by the direct 
time domain determination as 

v(t) = Vr [1- e-;\';:t]. 

Show that the Laplace transforms method produce the same result. 
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Solution 3,15 The same response can be obtained using Laplace trans-
forms as follows: 

b .2..v 
sV(s)- v(O) +-V(s) = m r 

rn s 

[ b ] .2..vr V(s) s +- = .JZl:_ m s 

V(s) = bvr 
m 

1 
where C1= --b 

s+-m s=O 

and c2 = ~~s=-~ m 

where v(O) = 0 

(3.25) 

m 
= b 

·m 

b 
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Substituting these coefficients in Equation 3.25 leads to, 

V ( s) = bvr [ 7 _ 7 ] 
m s b s+-

m 

=Vr [~-~l 
s+-m 

v(t) = .c-1 [V(s)] 

[ b l --t 
= Vr 1- e m 

Thus, the same result is obtained. 

Example 3.16 Consider a spring mass damper system with the following 
model 

my+ fy + ky = u(t) where u(t) is a constant, and y(O) = 0 

(a) Find the Laplace transforms of the output Y(s). 
(b) For the specific case with the following data 

m = 1, k = 2, f = 3, y(O) = 1 and u(t) = 0, 

find the system response. 

Solution 3.16 (a) The Laplace of the output is obtained by taking the 
Laplace transforms of both sides of the equation . 

.C (my+ fy + ky) = .C(u(t)) 

m [s2Y(s)- sy(O)- y(O)] + f [sY(s)- y(O)] + kY(s) = U(s) 

ms2Y(s)- msy(O) + fsY(s)- fy(O) + kY(s) =!!:. 
s 

Y(s) [ms2 + fs + k] = (ms + f)y(O) + !!:.. s 
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Therefore, 

u 
(ms + f)y(O) +-

Y(s)- 8 
- m.s2 + fs + k 

ms2 y(O) + sfy(O) + u 
s(ms2 + fs + k) 

(b) With the given data, the Laplace of the output then reduces to 

8 2 + 3s y ( s) - --,-----,-----~ 
- s(s2 + :3s + 2) 

s+3 
(s+1)(8+2) 

C\ = 8 + 32 is=-l = 2 s+ 

c2 = s + 31.. = -1 
S + 1 s=-2 

Substituting these coefficients in Equation 3. 26 leads to 

2 1 Y(s)=---
s+l s+2 

y(t) = .C~ 1 [Y(s)] 

- .c-1 (-2 ) -.c-1 (-1 ) 
s+l 8+2 
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(3.26) 

Example 3.17 For the RC electrical circuit shown below, where R = 20, 
C = 2F, and u(t) is a unit step input, find the system output vc(t). 
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vc 
R 

+ + 
5u(t) c 

An RC Circuit 

Solution 3.17 The input-output differential equation model is obtained by 
using the KVL 

5u(t) - VR- vc(t) = 0 
5u(t) - RCvc - vc(t) = 0 

4vc + v0 (t) = 5u(t). 

The output is obtained by taking the Laplace transforms . 

.C [4vc + vc(t)] = .C [5u(t)] 
5 

4[sVc(s)- vc(O)] + Vc(s) = -s 
5 

Vc(s)[1 + 4s] =-
s 

5 -
Vc(s) = 4 1 

s(s+ 4) 

where vc(O) = 0 

c1 c2 
= --;-+--1 

s+ 4 
5 5 
;---1 

s+ 4 

vc(t) = .c-1 [~ - ~l 
s+-

4 

Example 3.18 For the following nonhomogeneous input-output differen-
tial equations find their respective system response 
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(a) 

y+4y+3y=u(t) 
where y(O) = 1, y(O) = 0 and u(t) = 2 

(b) 

jj + 5y + 4y = u( t) 
where y(O) = o, y(O) = (3 and u(t) = 3 

(c) 

y + 5y + 4y = u(t) 

where y(O) = 0, y(O) = 0 and u(t) = 2e- 2t 

Solution 3.18 The system Tesponscs are obtained by taking the Laplace 
transforms of the input-output dijfeTential equations. 

(a) 

£ [2] = £ [jj + 4y + 3y] 

~ = [s 2Y(s)- sy(O)- ~/(0)] + 4 [sY(s)- y(O)] + 3Y(s) 

') 
~ = [s2Y(s)- s] + 4 [sY(s)- 1] + :3Y(s) 
s 

2 
- = Y(s)[s2 + 4s + 3]- (s + 4) 
8 

s+4 2 
- s2 + 4s + 3 + s(s 2 + 4s + 3) 

Y(s)- [_s_ + ~] + [.!?2_ + _s_ + Cs] 
- s+l s+3 s+l s+3 s 

The coefficients are found by coveT-up methods .svch that 

[ 3 1 l [ 1 2] 2 -2 -1 3 3 Y(s)= --+-- + --+--+-
s+1 s+3 s+1 s+3 s 

y(t) = .c- 1[Y(s)] 
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(b) 
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c [3] = c [jj + 5iJ + 4y] 

~ = [s2Y(s)- sa- ,8] + 5[sY(s)- a]+ 4Y(s) s 

3 
- = Y(s) [s2 + 5s + 4] -[sa+ ,8 + 5a] 
s 

Y(s) = s(sa + ,8 + 5a) + 3 
s(s + 1)(s + 4) 

c1 c2 c3 
=-;-+s+1+s+4 

The coefficients are then obtained and used to determine the system 
response. 

(c) 

3 3 - ,8 - 4a 3 - 4a - 4,8 

Y(s) = ..1 _ 3 + 12 
s s+1 s+4 

( ) _ ~ _ 3 - ,8 - 4a -t 3 - 4a - 4,8 _4t 
y t - 4 3 e + 12 e · 

C [jj + 5iJ + 4y] = C [2e-2t] 

2 
s2Y(s) + 5sY(s) + 4Y(s) = --2 s+ 

2 y ( s) - -:-----:--:-----:--;-----,-
- (s+2)(s+1)(s+4) 

2 1 
1 - -=-=- + _3_ + _3_ 

s+2 s+1 s+4 

y(t) = c-1 [Y(s)] 

-2t + 2 -t + 1 -4t = -e -e -e 
3 3 

Example 3.19 Consider a system that has the input-output differential 
equation 
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where the input is u(t) and outvut is y(t) where all initial conditions arc 
zero. Find the system response y(t). 

Solution 3.19 Taking Laplace transforms throughout the differential equa-
tion gives 

a1Y(s) + a2 [sY(s)- y(O)] + a3 [s2Y(s)- sy(O)- y(O)] = b1 U(s) 
+b2 [sU(s)- u(O)]. 

Setting aLl initial conditions to zero leads to 

a1Y(s) + a2sY(s) + a3 s2Y(s) 

Y(s) [a1 + a2s + a3s2] 

b1U(s) + b2sU(s) 

U(s) [b1 + b2s] 

==? y(t) = ,e-1 [ b1 + b2s U(s)] . 
a1 + a2s + a3s2 

Given the specific form of the input u( t), the actual expression of the re-
sponse y(L) can be determined. 

3.5 Using the System Transfer function 

The procedure of obtaining the system response using the system transfer 
function is very similar to that used when the model is in the form of an 
input-output differential equation. The procedure can be summarized as 
follows: 

• Obtain the system transfer function H ( s) (in Laplace transforms). 

• Express the Laplace transform of the output Y(s) in terms of the 
transfer function H( s) and the Laplace transform of the input U (s). 

• Take the inverse Laplace transform of this output Y(s). 

These steps can be expressed in terms of equations as follows: 

H(s) = Y(s) 
U(s) 

Y(s) = H(s)U(s) 
y(t) = .c-1 [H(s)U(s)] (3.27) 
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This is the general system response of any system in terms of the transfer 
function and the input in Laplace transforms. 

Example 3.20 Consider the dynamic system whose input-output differen-
tial equation is given by 

y + 2y = u(t), 
where y(O) = 0, y(O) = 0 and u(t) = 2. 

(a) Find the system transfer function H(8). 
(b) Find the sy8tem response y(t). 

Solution 3.20 (a) The sy8tem transfer function is determined by taking 
the Laplace transforms of the equation. 

£ [y + 2y] £ [u(t)] 

[8Y(8)- y(O)] + 2Y(8) = U(8) 

sY(s) + 2Y(s) = U(s) 

Y(s)[s + 2] = U(s) 

Therefore, H(s) = Y(s) 
U(s) 

1 
s+2 

(b) The sy8tem response is obtained from the transfer function and the 
Laplace transform of the input. 

y(t) = _c-l [H(s)U(8)] 

- _c-1 [(-1 ) (~)] 
s+2 s 

- _c-1 [ 2 ] 
- s(s+2) 

= ;:-1 [~- _1 ] 
s 8 + 2 

=1-e-2t. 
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Example 3.21 The car speed cruise control input-output differential eqv.a-
tion is given by 

for a step input Vr. 

. b b 
·u + -v = -Vr, 

rn m 

(a) Determine the system transfer function H(s). 

(b) Find the dynamic system response v(t). 

Solution 3.21 (a) The system transfer function is obtained by taking the 
Laplace tmnsforms 

b b [sV(s)- v(O)] +-V(s) =-Vr(s) 
rn m 

V(s) [s + !] =! Vr(s) 

Therefore, H(s) = V(s) 
Vr(s) 

b 
m --b. 

s+-m 

where v(O) = 0 

(b) The system response is obtained from the transfer function and the 
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Laplace transform of the input. 

v(t) = £-1 [H(s)Vr(s)] 

~ £ ' [ ('; ~) (v;) l 
c;) £-1 r 1 b j 

s (s + m) 

~ ("~ ) c-' [ ~' + ' ~'! ]· 
The coefficients aTe obtained by the cover up method as 

Hence, 

m m c1 = - and c2 = --b b' 

v(t)= C;:)£-1 [T _ ;b] 
s+-

rn 

-1 [1 1 l = Vr£ -; - --b-
s+-

m 

( b ) --t 
= Vr 1- e m . 

These last two examples illustrate how the system response can be deter-
mined from the system transfer function. Two simple but common inputs 
that are useful in the study of the response of any dynamic system are the 
impulse and step inputs. 

3.5.1 The Impulse Response (Natural Response) 

The impulse response h(t) is the output when the input is an impulse 
8(t). Such a response for any system with a general transfer function H(s) is 
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derived from the general system response in Equation 3.27 by substituting 
for U(s) with the Laplace transform of an impulse input given by U(s) = 1, 
such that 

y(t) .c- 1Y(s) 

.c-1 [H(s)U(s)] 

y(t) .c-1 H(s) = h(t) 
==? h(t) = .c-1 H(s). 

This means that the impulse response of any system is the inverse Laplace 
transform of the system transfer function. This is a very important response 
and is also called the natural response. It is very significant because it is 
the simplest type of response that can be analyzed for any system in order 
to deduce system characteristics. 

3.5.2 The Unit Step Response 

The unit step response y,(t) of a system is the output when the input is 
a unit step function. Such a response for any system with a general transfer 
function H(s) is derived from the general system response in Equation 3.27 
by substituting for U(s) with the Laplace transform of a unit step input 

given by U ( 8) = ~, such Lhat 
s 

y(t) .c-1 [H(s)U(s)] 

y(t) '-' r- 1 [H
8
(s)] 

This is the general expression for the step response of any dynamic system. 

3.5.3 The Impulse and Unit Step Responses: The Rela-
tionship 

A relationship can be established between the impulse and step responses 
by comparing their expressions 

h(t) = _c-l H(s) and y,(t) = .c- 1 [ IJ;s)] , 

and using the properties that s and ~ represent the difierential and inte-
grator operators, respectively. Integrating the natural response leads to 



206 Design and Analysis of Cont;rol Systems 

.I h(t)dt=£- 1 [~ x H(s)] 

= ;:,- 1 [ H;s)l 

= Yu(t). 

Alternatively, taking the derivative of the step response leads to 

dyu(t) = [s X H(s)] 
di s 

= ;:,- 1 H(s) 
= h(t). 

Thus, the relationship between responses can be summarized as follows: 

Yu (t) = ./ h(t)dt 

h(t) = dydu(t). 
t 

3.5.4 Final Value Theorem (FVT) 

This theorem is used to compute the steady state value of a time function 
y(t). 

lim y(t) = lim sY(s) 
t--+oo s--+0 

= lim s [H(s)U(s)], 
s~o 

where H(s) is the system transfer function and U(s) is the Laplace trans-
form of the input. This theorem only applies to stable systems since the 
final value of an unstable system is not defined. Consider two systems 
whose outputs in Laplace transforms are given by 

y s _ 4(s+2) 
1 (.)- s(s2 +2s+20) 

7 
Y2(s) = s(s- 4) 
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The first steady state value is obtained using FVT as follows: 

lim y 1 ( t). = lim s Y1 ( s) 
t-+oo s---+0 

[ 4(s+2) ] =lim s 
s~o s(s2 + 2s + 20) 

=lim 4(s+2) 
s-->0 (s2 + 2s + 20) 

= 
4x2 

20 

8 
20 

:For the second system, from the denominator it is clear that the system has 
a root in the right-hand plane (RHP) which means that it is an unstable 
system, hence the FVT is not defined. If the FVT is naively applied a 
steady state value of -i is obtained, which is incorrect as the response 
grows without bound. In fact 

Y2(t) = 7e4 t + 7, 

which is clearly an unstable system growing without bound. System sta-
bility is discussed in detail in Chapters 4 and 5. 

3.5.5 Initial Value Theorem (IVT) 

This theorem is used to compute the initial value of a time function y(t). 

y(O) = lim sY(s) 
S---+·Xl 

= lim s [H(s)U(s)], 
S-->00 

where H(s) is the system transfer function and U(s) is the Laplace of the 
input. The theorem is valid for all functions Y(s) where the degree of the 
numerator polynomial m is less than that of the denominator n. Consider 
the Laplace function, 

s3 + 2s2 + 4s + 7 Y(s) - ----=---
- s 3 + 2s 
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Attempting to apply the IVT leads to 

y(O) = lim sY(s) 
s-+oo 

1. (s3 +2s2 +4s+7) = lm s 
s-+oo s3 + 2s 

= oo (undefined) 

The reason why the IVT is not defined for this system is because m = n = 3 
in the Laplace function. 

3.5.6 DC Gain 

The DC gain is defined as the final value of the system response to a unit 
step input. It is obtained by employing the FVT when the input is a unit 

1 
step function, i.e., U(s) = -. 

s 
DC Gain= lim sY(s) 

s----+0 

= lim s [H(s)U(s)] 
s->0 

= lim s [H(s)~] 
s->0 8 

Therefore, the DC Gain= lim H(s), 
S->0 

where H(s) is the system transfer function. It is important to note that 
since the DC gain is defined in terms of the FVT when this theorem is not 
valid (e.g., an unstable system) then the DC gain is not defined. Consider 
two systems whose transfer functious are given by 

H(s)- s+5 
1 - (s+5)(s+7)(s+1) 

3s + 5 
H 2 (s) = (s + 5)(s- 7)' 

Find the DC gain for each of these systems. For the first system 

DC Gain= lim H 1 (s) 
s->0 

1. [ 8 + 5 1 - Im 
- s-+O (s + 5)(s + 7)(s + 1) 

5 

5 X 7 X 1 

1 
-
7 
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The second system is unstable because the characteristic equation has a 
root in the RHP. Hence the FVT is not valid which in turn makes the DC 
gain undefined. 

3.6 First-Order Systems 

A general first-order system is of the form 

1 H(s)=-
s+u 

h(t) =e-at 

u > 0 = pole is located at s < 0 

e-at decays = impulse response is stable 

if u < 0 =? s > 0 = exponential growth ----. unstable 

. 1 1 
T1me constant T = - = when response is - times the initial value. 

u e 

1 

0.25. 
t='t 

1 2 3 

FIGURE 3.9 
A First-Order System 
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3. 7 Second-Order Systems 
The transfer function of a second-order system takes the general form 

w; _ b(s) 
H(s) = s2 (2~wn) s + w~ = a(s)' (3.28) 

where the complex poles are given by 

The relationship between the pole variables (CT and wd) and the system 
parameters (~ and wn) can be established by expressing the characteristic 
equation in terms of the poles. 

a(s) = (s- sl)(s- s2) 

= [s- ( -CT + jwd)] [s- ( -CT- jwd)] 

= (s + CT- .iwd)(s + CT + jwr~) 
=(s+CT) 2 +w~ 

s 2 + 2CTS + 0" 2 + W~ 

Comparing the coefficients of this characteristic equation with those of the 
standard one in Equation 3.28 leads to 

20" = 2~Wn 

==? 0" = ~Wn 
CT 2 + w~ = w;, 

( c )2 + 2 2 ==? c,Wn Wd = W 11 

') ') ( )2 
==? W'd = w;:, - ~Wn 

==?wd=wnP 
~ = damping ratio 

Wn = undamped natural frequency. 

The relationship can be summarized as 

(} = ~Wn and Wd = WnR· 

(3.29) 

(3.30) 
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Therefore, the poles are located at a radius Wn in the s-plane and at an 
angle e where 

FIGURE 3.10 
S-plane 

tane = !!_ 
Wd 

wnvll=? 
~ 

tan e = r;--:::2 
yl-~ 

::::} sinG=~ 

1~cr-

sine 

cose 

and cose=R 

Im 

Re 

3.7.1 Impulse and Step Responses 

In this section, the general impulse and step responses for second-order 
systems are derived, plotted and compared. Consider the general second-
order transfer function 
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The general second-order system impulse response h(t) is determined as 
follows: 

h(t) = £- 1Y(s) 

= £- 1 [H(s)U(s)] 

= £- 1H(s) 

= £-1 

= £-1 

(where U(s) = 1) 

= 12_1 [ ( p )wnj(!-<') ' 
(s + ~wn)2 + (wn j(l- e)) 

~e-Ewntsin (wn)(l- e)) t 

Completing the square 

l'viultiplication by one 

Rearranging 

Using Equation 3.19 

It is important to note that the natural response of a second-order sy~tem 
is a special case of the more general response given in Equation 3.23, where 
d = 0, c = b = 'LL'.~ and a= 2~w". 

The step response y, ( t) of a general second-order system is obtained in 
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a similar fashion. 

Yu(t) = .c-1Y(s) 

= .c-1 [H(s)U(s)] 

= .c- 1 [ n;s)J 

_ .c-1 [ w;, ] 
- s(s2 + (2~wn)s+w;) 

= £-1 Completing the square 

= _c-1 

s [(s+~wn) 2 + (wnJ(l-e)r] 
Adding zero 

= £-1 
(~wn) 2 + (wn)Cl-e)) 2 

Rearranging 

(by using Equation 3.20 ) 

= 1 --

The impulse and step responses are compared by analyzing their two 
responses, 
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FIGURE 3.11 
The Impulse Response for Different Values of~ 

w h(t) = pe-atsinwdt 
1- ~-~ 

Yu(t) = 1- e-at [coswdt + :d sinwdt]. 

Plots of the impulse response and the step response for different values of 
~are shown in Figure 3.11 and Figure 3.12. 

The transient characteristics of the two responses are similar and depend 
on the value of~-

(a) ~ = 0 ===? Oscillations with constant amplitude of 1. 

(b) ~ = 1 ===? Least overshoot and fastest settling time. 

(c) The steady state value or final value is 1 for the step response and 0 
for the impulse response. 

3. 7.2 Stability for Second-Order System 

Whether a system is stable or not can be established by studying its 
natural response. For a general second-order system this response is of the 
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• The response envelope is defined by e-ut and hence the real part of 
the pole J determines the decay rate of the natural responses. 

Ql If J < 0, then the pole is in the RHP and the natural response grows 
without bound, which means the system is unstable. 

• If J > 0, then the pole is in the LHP and the natural response decays, 
which means the system is stable (Figure 3.B). 

• If J = 0, then the pole is on the imaginary axis and the natural 
response oscillates with a fixed amplitude, which means t.he system is 
marginally stable or has indeterminate stability. 

Example 3.22 (a) Discuss the Telationship between the poles of the fol-
lowing system tmnsfeT function 

H(s) = 2s + 1 , 
s2 + 2s + 5 



216 Design and Analysis of Control Systems 

FIGURE 3.13 
A Stable Second-Order System 

and the corresponding irnvulse response. 
(b) Find the exact response. 

Solution 3.22 (a) Comparing the characteristic equation of the system 
with the standard second-order eq·uation gives 

Equating the coefficients gives 

w~ = 5::::} Wn = J5 
1 

2~Wn = 2 ::::} ~ = y'5. 

The poles are obtained directly from the characteristic equation as ( -1 ± 2j) 
or as follows: 

s1, s2 -(} ± jwd 

where (} ~Wn and Wd = WnR 

(b) The exact impulse response is obtained by breaking the transfer function 
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into partial fractions and using the method of completing the square. 
2s + 1 

H(s) = (s + 1)2 + 22 

2(s + 1) (~)X 2 

(s+1) 2 +22 

1 h(t) = 2e-t cos 2t- 2e-t sin 2t. 

The impulse response can be plotted using MATLAB as follows: 
num = [2 1]; 
den= [1 2 5]; 
impulse( num, den). 

3. 7.3 Characteristics of a Step Response 
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The characteristics of a general step response are given in Figure 3.14. 

:J-1% 

0.91---------1 

0.1 

t 
t 

FIGURE 3.14 
A General Response to a Step Input 
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• Rise time ( tT) : The time to reach vicinity of a new set point. 

• Settling time (ts) : Time for system transients to decay. 

e Overshoot (lvfp) : Maximum overshoot (as a% of final value). 

e Peak time (tp) : Time to reach the overshoot. 

• The values of the parameters are summarized as follows: 

1.8 
tT=-

Wn 

7r tp =-
Wd 

4.6 4.6 
is=--=-. 

~Wn () 

e The effect of an extra pole is to increase the rise time. 

3. 7.4 Effects of Pole-Zero Location on the Response 

The transfer function is used to analyze the response of the system it 
represents. 

H(s) = b(s) = a polynomial ins. 
a( s) a polynomial in s 

Poles are the values of s such that a( s) = 0, zeros are values of s such 
that b(s) = 0. Assuming no common factors, when a(s) = 0, i.e., H(s) 
is infinity, the roots of the equation are called poles of H(s). The roots 
of the polynomial b( s) = 0 are called the zeros of the system. Systems 
with poles in the right-hand plane (RHP) arc said to be unstable, while 
systems with zeros in the right-hand plane (RHP) are called nonminimum 
phase systems. The stability of dynamic systems and the significance of 
nonminimum phase systems will be discussed in detail in later chapters. 

The effect of poles on the response of a system can be briefly established 
by considering the following transfer function, 

2s + 1 b(s) 
H(s)= s2+3s+2 a(s)' 
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where 

b( s) = 2 ( s + ~) 
a( s) = s2 + 3s + 2 

= (s + 1)(s + 2). 

This means that there are two poles at s = -1 and s = -2, and one zero 
at s -~.The location of the poles (x) and zero (o) are illustrated in the 
following diagram. 

Im(s) 

1 2 Re(s) 

Location of Zero and Poles 

Using partial fractions the natural response can be obtained as follows: 

2 (s + 1) H ( s) - ..,---"--:-:----"-'--::-:-
- (s + l)(s + 2) 

I 3 
H(s)=-s+l + s+2 

h(t) = -e-t + 3e-2t for t 2:: 0 

= 0 fort< 0. 

Thus, the natural response is determined by the location of poles. The fast 
pole is at s = -2 and the slow pole is at s = -1, where this is determined 
by the relative rate of signal decay: 

3e-2t dominates the early part. 

- e-t dominates the later part. 

The sketches of the natural system response can be obtained by considering 
the numerator (2s+1) and denominator (s2 +3s+2) in MATLAB as follows: 

num = [2 1]; 



220 Design and Analysis of Control Systems 

den= [1 3 2]; 
impulse(num, den). 
Zeros exert their influence by modifying the coefficients of the exponential 

terms whose shape is decided by the poles. This is illustrated by considering 
a transfer function and its corresponding natural response. 

2 
H1 = 

(s+1)(s+2) 
2 2 

s+1 s+2 

(3.31) 

If a zero is introduce near the pole at s = -1, (at s = -1.1) the new 
transfer function and its corresponding natural response arc given by 

H 2 = 2(s + 1.1) = 0.18 + 1.64 
1.1(s+l)(s+2) s+1 s+2 

===> h(t) = 0.18e-t + 1.64e-2t. (3.32) 

Comparing the magnitudes of the coefficients of the exponential functions 
in Equations 3.31 and 3.32, it can be observed that the introduction of a 
zero at s = -1.1 dramatically reduces the effect of the pole at s = -1. 
In fact if a zero is placed exactly at s = -1, the term due to the pole -1 
(i.e. 2e-t) completely vanishes. In general, a zero near a pole reduces the 
amount of that term in the total response. 

Some of the effects of zero and pole patterns on the general response 
presented in Figure 3.14 can be summarized as follows: 

® In a second-order system with no finite zero::; 

1.8 
i.r=-

Wn 

Mp = 5% for~= 0.7 

= 16% for ~ = 0.5 

= 35% for ~ = 0.3 

4.6 ts = -. 
(J 

Ill An additional LHP zero will increase overshoot. 

® An additional H.HP zero will depress the overshoot (start in the op-
posite direction to that of the final steady state value). 

• An additional pole in LHP will increase the rise time. 
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3.8 Examples: System Response (Laplace 'fransforms) 
Example 3.23 (a) Write down the equations that describe the following 
electrical circuit in state-variable form 

v 1 (t) v 2 (t) c 

o~--------------------------~-L----~0 
FIGURE 3.15 
An RLC Electrical Circuit 

(b) Express the model as a second-order differential equation in y(t). 

Solution 3.23 Choose the voltage across the capacitor y(t) and the current 
flowing through the inductor i(t), as the state variables. 

FaT the capacitor 

' dy . i(t) 
7 ( t) = c dt ===} y = c. 

Applying the KVL for· !.he circuit 

di ' u- L- - RL- y = 0 
dt 

di u R. y 
dt = L- L L- I' 

The state-variable matrix system takes the form 

[~] 

R 
L 

1 
c 

1 
L 

0 

y [o 1 J[~J + [O]u. 
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The input-output differential equation is given by 

di u R. y 
dt L- L ~- L 

___._ d ( C iJ) = '!:!:_ - R (C y· ) - y_ h ( ) C 
---r dt L L L w ere i t = iJ 

Cdy (CR). y u 
==}--;It+ T Y+£=£ 

d iJ (R) . y u 
===}dt+ L y+CL=cL· 

Given the values of L = 1, R = 2, C = 1 and using them leads to 

y = [ 0 1 J[ ~] + [0] u. 

This is the state-variable form. The input-output differential equation re-
duces to 

& 2' h - = - ~ - y + u w ere 
dt 

. dy 
~=-

dt 
===} ii = - 2iJ - y + u 
===} ii + 2iJ + y - u = 0. 

Applying Laplace transform, assuming the following conditions: u = 0, 
y(O) = 1 and y(O) = 0, leads to 

s2Y(s)- sy(O)- y(O) + 2 [sY(s)- y(O)] + Y(s) = 0 

s2Y(s) + 2sY(s) + Y(s) = sy(O) + y(O) + 2y(O) 

(s2 + 2s + 1)Y(s) = s + 2 
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Therefore, 

Y(s)- s+2 
- s2 + 2s + 1 

s+2 
(s + 1)2 

(s+1)+1 
( s + 1)2 

1 1 = ----1-..,-------,-
s+l '(s+1)2. 

(3.33) 

The time domain system response is obtained by taking the inverse Laplace 
transform of the function in Equation 3.33, and then plott·ing the result. 

-1 [ 1 1 J y(!.)=.C s+l +(s+l) 2 

Using MATLAB's initial command the same result can be obtained. 

The syntax for the MATLAB fmtction is given by 

initial(A, B, C, D, X 0 ). 

where X0 is the vector of initial values [0 l]T. The results are shown in 
the following diagram. 
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MATLAB plot for RCL circuit 

Example 3.24 Find the transfer function if the input and output are re-
spectively given by the following equations 

Solution 3.24 

u(t) = e-t 
y(t) = 2- 3e-t + e-2t cos 2t 

1 U(s) = - 1 s+ 
y s = ~ - _3_ + s + 2 

() s s+1 (s+2)2+4 

G( ) = Y(s) 
s U(s) 

2 3 s + 2 - - -- + -,---.,...,--
s s+1 (s+2)2+4 

1 
s+1 

s2 + 2s + 16 
s(s2 + 4s + 8)" 
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Example 3.25 Consider the following RLC circuit and find: 

L 

o~-----~--i(_Q ____ c_T~~o v 1 (t) v 2 (t) 

An RLC Electrical Circuit 

(a) The time domain equation relating i(t) and v1 (t). 

{b) The time domain equation relating i(t) and v2 (t). 
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(c) The transfer function V2(s)jV1 (s), assuming zem initial conditions. 
{d) The damping ratio~ and the natural frequency Wn· 

(e) The value of R such that the overshoot, Mp = 25% where v1(t) is a 
unit step input, L = lOmH and C = 41-',F. 

Solution 3.25 The KVL and KCL are used to set up the equations. 
(a) From applying the KVL in the input loop leads to 

v1 (t) = L ~~ + Ri(t) + ~ J i(t)dt. 

{b)Fmm applying the KVL in the output loop leads to 

1 J. v2(t) = C z(t)dt. 

(c)The transfer function ~~:~ is obtained by first taking the Laplace 

transforms of the expressions of v2(t) and v2 (t). 

V1 (s) = (sL + R + s~) I(s) 

1 
V2 (s) = sCI(s). 
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The transfer function is the ratio of the transforms 

1 
sCI(s) 

(sL + R + 8~) I(s) 

1 
LC 
R 1 s2 +-s+-L LC 

(3.34) 

(3.35) 

(d) The damping ratio ~ and the natural frequency Wn are obtained by 
comparing the coefficients of Equation 3.34 with those of the standard form 
of a general second-order system shown in Equation 3.35, 

2 1 
wn = LC 

(3.36) 

(iv) Given that the overshoot Mp = 25%, a value of the damping ratio ~ 
can be obtained from the following expression for the overshoot 

- ---2!:.L_ 
Mp = e v'1 -{2 

::::} ~~0.4. 

The value of R is then determined by substituting this value of the damping 
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ratio in Equation 3.36. Hence, it follows that 

~ = R rc 
2 vz 

{:} R = 2~ f!i = (2) (0.4) 

=> R = 40D. 

10 X lQ-3 

4 X lQ-6 
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Example 3.26 Consider the following transfer functions for certain dy-
namic systems. 

(a) 

(b) 

(c) 

Find the output for each system if the input is as shown below. 

u(t) 

t 

Solution 3.26 (a) The input can be written in the form of a ramp function 
and a delayed ramp function using superposition principle 

·u(t) = r(t)- 2r(t- 1) + 2r(t- 2)- 2r(t- 3), 

where r(t) = t is the ramp function. Thus, only the r-esponse to a ·ramp 
funci'ion Yr ( t) has to be determined and the total r-esponse y(t) is then ex-
pressed in teTms of the ramp response using the sv.per-position pr·inc7ple. 

y(t) = Yr(t)- 2yr(t- 1) + 2yr(t- 2)- 2yr(L- :3). 
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In order to determine the ramp response Yr(t) consider the general transfer 
function equation, 

H( ) = Y(s) 
s U(s) 

{c? Y(s) = H(s)U(s) 

* Yr(s) = H(s)R(s) 

-1 [ 1 J {c? Yr(t) = .C H(s) s2 · 

This is true for all the three transfer functions (a), {b), and (c), hence the 
corresponding ramp responses are given by the following eq'uations, 

respectively. 

_c-l [ 5s 1 J Yr(t)= s2+2s+5xs2 (3.37) 

-1 [ 5 1 ] Yr ( t) = .C 2 2 5 X 2 s + s + s 
(3.38) 

(3.39) 

Thus, the remaining task is determining the three inverse Laplace trans-
forms given in Equations 3.37, 3.38, and 3.39. 

(a) Consider Equation 3.37 and express the Laplace function in paTlial 
fractions 

5s 1 5 
---:::----:---:-X-=--:--;;----::----::-:-
s2+2s+5 s2 s(s2 +2s+5) 

A Bs+C 
= - + -;::---::---:-:-

s s2 + 2s + 5 · 
(3.40) 

The following coefficients aTe obtained, 

A= 1, B = -1, C = -2. 
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Using these coefj1cients and then taking the inverse Laplace transform of 
Equation 3.40 leads to 

,e-1 [ 5s 1 l Yr ( t) = s2 + 2s + 5 x s2 

-,e-1 r~- s+2 ] 
- s s2 + 2s + 5 

= ,e-1 [~] - ,e-1 [ s + 2 ] 
s s 2 + 2s + 5 

=.c-~[~]-c-ll,s+1 J-c-11 1 J 
s l s2 + 2s + 5 l s2 + 2s + 5 

1 
= 1 - e-t cos 2t- -e- 1 t>in 2t. 

2 

As explained above, the complete response y(t) is then expressed in terms 
of this ramp response. 

y(t) = y,.(t)- 2y,.(t- 1) + 2y,.(t- 2)- 2y,(t- 3) 

(b) Consider Equation 3. SB and express the Laplace function in partial frac-
tions 

5 1 5 
s2 + 2s + 5 x s2 = s2 (s2 + 2s + 5) 

(3.41) 

The following coefficients are obtained, 

These coefficients and the inverse Laplace transform of Equation 3.41 can 
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be used to obLain the response Yr(t). This is carried out as follows: 

= _c-1 [ 
2 2 2 ll --;::- 1 -(s+l)--;::---

_;;>_+-+5 0 5 
s s2 ( s + l) 2 + 4 

[ 
2 2 3 1 l -- 1 -(s+1) --;::x(-)x2 

= _c-1 ___ji + - + 5 - 0 2 
s s2 (s+1)2+4 (s+l)2+4 

2 2 -t 3 I . = -5 + t + 5e cos 2t- 10 e sm 2t. 

The complct.e r·esponse y(t) is then expressed in terms of this ramp response. 

y(t) = Y7 (t)- 2yr(t- 1) + 2yr(t- 2)- 2yr(t 3) 

(c) Consider Equation 3.39 and e:cpress the Laplace funeLion in partial frac-
tions 

(3.42) 

The following coefficients are obtained 

Using these coefficients and taking the inverse Laplace transform of Equa-
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tion 3.42 gives the response Yr ( t). This is achieved as follows: 

r 
2~ 2~ 2 1 -- -s + (4~ - 1) 

~ -1 Wn 1 Wn 
y,(t) = £ -- + 2 + 2 + 2~· + .2 s s S Wn wn 

= ,e-1 ~ + _,!_ + _W=n--------~---,,-r --
2~ -2' (,, j (wn)- 21;' + (1(' -1)1 
S sZ (s+~wn) 2 +(wnve-1)) 2 

= £-1 ~ + _ + ___ W-'-'--n ------,-r 
__ 2~ 1 _2~ (s + ~wn) 1 

S s2 (s + ~wn)2 + (w,~)) 2 

(2e-1)x ( F) x (w"ve-1) 
(wn ~ -1) 

2~ 2~ .. r:;-: = -- + t + -e-~~nt cos(wn V ~ - l)t 
Wn Wn 

2e - 1 c t r:;-: + ') ~ c-~wn sin(wny~ -1)t. 
Wn~ 

(3.43) 

The complete response y(t) is then r:1:pressed in terms of this ramp response, 

y(t) = y,(t)- 2y7 (t- 1) + 2yr(t- 2) - 2y,(t- 3), 

where Yr(t) is given in Equation 3.43. 
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3. 9 Block Diagrams 
A block diagram is an interconnection of symbols representing certain 

basic mathematical operations in such a way that the overall diagram obeys 
the system's mathematical model. In the diagram, the lines interconnecting 
the blocks represent the variables describing the system behavior, such as 
the iuput and statu variables. Inspecting a block diagram of a system may 
provide new insight into the system's structure and behavior beyond that 
available from the differential equations themselves. [8] 

In order to obtain the transfer function of a system, it is rcq uired to find 
the Laplace transform of the equations of motion and solve the resulting 
algebraic equations for che relationship between the input and the output. 
In many control system::> the system equations can be written so that their 
components do not interact except by having the input of one part be the 
output of another part. In these cases, it is easy to draw a block diagram 
that represents the mathematical relationships. The transfer function of 
each component is placed in a box, and the input-output relationships be-
tween components are indicated by lines and arrows. 

The general block diagram for a system with an input u(t), an output 
y(t) and transfer function G(s) is shown in the following diagram. 

Block Diagram Representation 

The transfer function, the ratio (in Laplace 
the input, is given by 

Y(s) 
G(s) = U(s). 

of the output to 

Thus, the block can be represented by an electronic amplifier with the 
transfer function printed inside as illustrated in the preceding diagram. 

3.9.1 Networks Blocks 

The blocks in a block diagram can be connected in different basic forms 
that include po:mllel, negative feedback and net-
works. These basic forms constitute the building strucimes of complex 
block diagrams a.ml it ic; essential to understand how their transfer flmc-
tions are obtainccL This knowledge can then be used to complex 
block and determine their transfer functions. 
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Two blocks in series are represented as follows: 

_u_(s_) -1 GI ~~~~?~ G, I ~:~ u 
Blocks in Series 

Hence. the overall transfer function is obtained from 

G(s) = uf:; 
Ci2(s)G1(s)U(s) 

U(s) 

= G2(s)G1(s). 

Two blocks ill parallel are represented as follows: 

U(s) [ -- ~ 
+ Y(s) 

L 
+ 

Blocks in Parallel 

Hence, the overall transfer function is obtained from 

G(s) = Y(s) 
U(s) 

G1(s)U(s) + G2(s)U (s) 
U(s) 

[Ci1(s) + Ci2(s)] U(s) 
U(s) 

= G1(s) + Ci2(s). 

For negative feedback the block diagram takes the following form: 

R(s) + ul (s) 
GI 

Y1 (s) 
L 

-

Y2(s) 
G2 

U2(s) 
Negative Feedback Block Diagram 

233 
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The closed-loop transfer function for the negative feedback system is then 
obtained as follows: 

U1(s) = R(s)- Y2(s) 

Y2(s) = G2(s)G1(s)U1(s) 

Y1(s) = G1(s)U1(s) 

Y1(s) [1 + G1(s)G2(s)] = G1(s)R(s) 

G( ') = Y1(s) 
3 R(s) 

The positive feedback block diagram is similar to the negative feedback 
one, except that the feedback signal is added and not subtracted. 

R(s)+ ul (s) 
Gl 

Y1 (s) 
1: 

+ 

Y2 (s) 
G2 

U2 (s) 

Positive Feedback Block Diagram 

The closed-loop transfer function for the positive feedback block diagram 
is obtained in the same way as for the negative feedback one. 

U1(s) = R(s) + Y2 (s) 

Y2(s) = G2(s)G1(s)U1(s) 

Y1(s) = G1(s)U1(s) 

Y1(s) = G1(s) [R(s) + G1(s)G2 (s) Y(;(s.·)J 
> l (s) 
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Y1 (s) [1- G1(s)G2(s)] = G1(s)R(s) 

G(s) = Y1(s) 
R(s) 

1- G1(s)G2(s)" 
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It is instructive to note that for the positive and negative feedback block 
diagrams, the closed-loop transfer function has the same form 

G1(s) 
G(s) = 1 ± G1(s)G2(s)' 

where the +ve sign is for the negative feedback system and the -ve sign is 
for the pol:litivc feedback system. 

3.10 Simplifying Block Diagrams 

When a i:lystem is modeled in a block diagram form the overall transfer 
function can be obtained by using block diagram simplification, which is of-
ten easier and more informative than algebraic manipulation, even though 
the methods are in every way equivalent. The central motivation behind 
simplifying a block diagram is the reduction of the complexity of the block 
diagram and obtaining the overall transfer function, while maintaining the 
same relationship among remaining variables. There are two main tech-
niques that can be used to achieve this objective. The first method is 
direct block diagram reduction using block diagram algebra, and the other 
approach is based on signal flow diagram analysis. 

Once the block diagrams have been simplified, the overall system transfer 
function can be obtained. If the block diagram is not available its structure 
can be established from component transfer functions. It is important to 
note that blocks can be connected in i:leries only if the output of one block is 
not affected by the following block. lf there are any loading effects hetween 
the components, it is necessary to combine these components into a. single 
block. Any number of cascaded blocki:l representing non-loading compo-
nents can be replaced by a. single block, the transfer function of which is 
simply the product of the individual transfer functions. 

3.10.1 Direct Block Diagram Reduction 

A complicated block diagram involving many feedback loops can be sim-
plified by a step-by-step rearrangement, using rules of block diagram alge-
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bra. This algebra depends on equivalence between simple block diagram 
configurations as shown in the following illustrations. 

_u-=-~--r--· ~~ 

L__ ___ ~ __ Yz 

R 

Unity feedback 

Examples of Block Diagram Algebra 

The most important block diagram rules are summarized in Figure 3.16. 

Example 3.27 (a) Consider the following block diagmm. 

~ _u_(--'t) __ +®--~ L 02 

-~________, 
y(t) 

Block Diagram 

(a) Find the system transfer function. 
(b) Choose system. gains to make the transfer function ·unity. 

Solution 3.27 The block diagram is reduced as follows: 
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Original Block Diagrams Equivalent Block Diagrams 

A-_!! 

1 
.~IGIAG+~B ~~IGIAG-B 

~l ~YIJ~ 
~@] AG A ~ 2 

I A~ 1:~ 
A ~ ~@] AG 

3 I ~ L~ AG G 

4 ~ -~ 
~@f®--~c:r 2 - t . 

~~ A 

I 1+~~021 
B 

5 -~ 

FIGURE 3.16 
Summary of Block Diagram Algebra 

u + 

and finally to 

u 
l+Hl G1 G2 

G2 1-G2H2 

Therefore, the transfer function is given by 

Y(s) G1G2 
U(s) 1- G2H2 + H1G1. 

y 
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(b) The design problem is to choose gains such that. 

Y(s) ChG2 
U(s) 1- G2H2 + H1G1 = 1. 

One set of gains that will satisfy this requirement is obtained by setting the 
gain prod11cts to 1, i.e., 

G1G2 = G2II2 = HrGr = 1. 

For example, if G 1 is chosen to be 100, it then follows that 
i 1 

G 1 = 100 ==? ()2 = 100 and Ih = 100 

1 
G2 = 100 ==? H2 = 100. 

3,10.2 The Signal Flow Graph 

The signal flow graph is another visual tool for representing causal rela-
tionships between components of the system. It is a simplified version of a 
block diagram introduced by S. J. :Mason as a cause-and-efrect representa-
tion of linear systems. In addition to the difference in physical appearances 
between the signal flow graph and the block diagram, the signal flow graph 
is constrained by more rigid mathematical rules. The signal flow graph is 
defined as a graphical means of portraying the input-output relationships 
between the variables of a set of linear algebrclic equations. Consider a 
linear system described by a set of n algebraic equations such that, 

n 

Yj = L9iJYi where j = 1, 2, ... , n. 
·i=l 

These n-equations are written in the form of cause-and effect relationships: 

or simply 

n 

jth effect = L(gain from ito j) x (ith cause) 
i=l 

output = L gain x input. 

This is the most important axiom in forming the set of algebraic equations 
for signal flow graphs. In the case where the system is represented by a 
set of differential equations, these equations must be first transformed into 
Laplace transform equations such that 

n 

lj(s) = L Gij(s)Yi(s) where j = 1, 2, ... , n. 
i=l 

The basic dements of a signal flow graph can be summarized as follows: 
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• Nodes: Junction points that represent variables, internal signals, in-
puts or outputs 

• Paths (Branches): Segments connecting nodes, or sequences of con-
nected blocks (route from one variable to another) 

• Forward palh: From input to output, such that no node is included 
more than once 

• Loop: Closed path that returns to the starting node 

• Loop path: The corresponding path 

• Path gain: Product of component gains making up the path 

• Loop gain : Gain associated with a loop path 

Figures 3.17 and 3.18 illustrate block diagrams and their corresponding 
signal flow graphs. 

G3 

~\ 
G2 I 

}------( 2)----o----( 3 

FIGURE 3.17 
Block and Signal Flow Diagrams 

3.10.3 Properties of Signal Flow Graphs 

The properties of signal flow graphs can be summarized as follows: 

• Signal flow graph analysis only applies to linear systems. 

• The equations from which the graphs arc drawn must be algebraic 
equations in the form of cause and effect. 

• Nodes arc used to represent variables and are normally arranged from 
left to right (from the input to the output) following a succession of 
cause-and-effect relationships. 
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@ 
+ 

+ 

FIGURE 3.18 
Block and Signal Flow Diagrams 

• Signals travel along paths only in the direction described by the ar-
rows of the paths. 

• The path directing from node Yi to Yj represents the dependence of 
Yj upon Yi, but not the reverse. 

• A signal Yi traveling along a path between Yi and Yj is multiplied by 
the gain of the path, 9ij, so that a signal 9ijYi is delivered at Yj. 

3.10.4 Mason's Transfer Function Rule 

Mason's transfer function rule states that, for a signal flow graph (or 
block diagram) with n forward paths and l loops, the transfer function 
between the input r(t) and the output y(t) is given by 

T( ) = Y(s) 
8 R(s) 

(3.44) 
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where 

Gi = The path gain of the ith forward path. 

6 =The system determinant 

= 1 - '5:) all individw2l loop gains) + 
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L)gain products of all possible two non-touching loops) -

"l:(gain products of all possible three non-touching loops)+ ... , 

6i =The il.h forward path dct.erminant 

=The val'ue of 6 for that part of the block diagram that docs not 

touch the ith forward path. 

Due to the similarity between the block diagram and the signal flow 
graph, the transfer function formula given by Equation 3.44 can be applied 
to determine the input-output transfer function of either. In general, the 
transfer function formula can be applied directly to a block diagram. How-
ever, in complex systems, in order to identify all the loops and non-touching 
parts clearly, it is helpful to draw an equivalent signal flow graph to the 
block diagram before applying the gain formula. 

In order to illustrate an equivalent signal flow graph of a block diagram 
and how the gain formula is applied to a block diagram, consider the block 
diagram shown in Figure 3.19 (a). The equivalent signal flow graph of the 
system is shown in Figure 3.19 (b). Notice that since a node on the signal 
flow graph is interpreted as a summing point of all incoming sigHals to 
the node, the negative feedbacks on the block diagram are represented by 
assigning negative gains to the feedback paths on the signal flow graph. 
The closed-loop transfer function of the system is obtained by applying the 
transfer function formula (Equation 3.44) to either the block diagram or 
the signal flow graph in Figure 3.19. 

Y(s) C\ChG3 + G1 
R(s) !::. 

where 

Therefore, 

Y(s) G1G2G3 + G1G4 
R(s) 1 + G1G2H1 + G2G3H3 + G1G2G3 + G4H2 + G1G~· 
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R + 
-:E E+~~:·.IIG,I +l+y 

- - y 2 

(a) 

cr------o--~---o--------o-------~-------o---------o 

R 

FIGURE 3.19 
Block 

Similarly, 

-1 
(b) 

and Signal Flow Diagram 

E(s) 1 + G1G2H1 + G2G3H2 + G4H2 

y 

R(s) 1 + G1G2H1 + G2G3H3 + G1G2G3 + G4H2 + G1G4 

Therefore, 

= Y(s) /E(s) 
R(s) R(s) 

G1G2G3 + G1G4 

y 
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3.11 Examples: Simplifying Block Diagrams 

Example 3.28 Determine the transfer function between R(s) and Y(s) in 
the following block diagram. 

R(s) 

Block Diagram 

Solution 8.28 Simplify the internal closed-loop 

B 
R(s) + -

}------1 

c 

Add signal C, closed-loop and m.ultiply before signal B 

Move middle block N to the left side of the left summer. 

Y(s) 

Y(s) 

+ 

Y(s) 
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R(s) 
N 

Y(s) 

Now reverse the order of summers and close each block separately 

R(s) Y(s) 
~------~--~o 

Y(s) G1G2 + G3 + G3G1H1 + G3G1H2 

R(s) 1 + G1H1 + G1H2 + G1G2H3 

The same result can be obtained by using Mason's rule. The starting 
point is establishing the forward path gains and loop gains. 

Forward Path Loops 
g1 = G1G2 h = -G1H1 
g2 = G3 l2 = -G1H2 

l3 = -G1G2H3 

n 

Lgil:;i = GlG2(1) + G3(1 + GlHl + GlH2) 
i=l 
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The overall transfer function is then obtained as follows: 

0102 + 03 + Os01H1 + 0301H2 
1 + 01H1 + 01H2 + 0102H3 

which is the same as the result obtained using block diagram algebra. 
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Example 3.29 Find the transfer function of the system in the following 
block diagram,. 

Y(s) U(s) @--:@--IG";l 
+ + + + ~ 

Block D·iagram 

Solution 3.29 The block diagram is simplified as follows: 

Y(s) 
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:E 
G1G2G3 Y(s) 

+ 1- G1G2HrG2G3H2 

U(s) Y(s) 

Therefore, the overall transfer function is given by 

Y(s) G1G2G3 
U(s) 1- G1G2H1- G2G3H2- G1G2G3. 

The same result can be obtained using Mason's signal flow approach. The 
numerator of the overall transfer is the product of the transfer Junctions of 
the feed-forward path, i.e., 

n 

num(s) = ~gi6i 
i=l 

The denominator den ( s) is given by 

den(s) = 6 

= 1 - ~ (product of the transfer functions around each loop) 

Therefore, the overall transfer function is given by 

1 - G1 G2H1 - G2G3H2 - G1 G2G3. 

Notice that the positive feedback loop yields a negative term in the 
denominator. 

Example 3.30 Derive the transfer function, the input-output differential 
equation, and the state-variable matrix form for the following block diagram. 
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Block Diagram 

Solution 3.30 Forward path 

Feedback path 

bl b2 b3 b4 
-+-2+-3+-4 s s s s 
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The general transfer function in terms of forward and feedback paths is 
given by 

Y(s) Forward Path 
U(s) 1 ± Feedback Path' 

where the +ve sign is for negative feedback and the -ve sign is for positive 
feedback. Since the system under consideration is a positive feedback one, 
the transfer function is obtained as follows: 

Y(s) Forward Path 
U(s) 1- Feedback Path 

(3.45) 
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The differential equation is obtained from Equation 3.45. 

4 3 2 ,3 2 Y(.s)(s - (a1s + a2s + a3s + a4)) = U(s)(b1s + b2s + b3s + b4) 

"1i- a1 ii- a2ii- a3y- a4y = b1·u + b2u + b3u + b4u. 

From the block diagram 

X4 = X3 
X3 = X2 
X2 = X1 

= U + CL1X1 + CL2X2 + a3X3 + a4X4 
y = b4x4 + b3X3 + b2x2 + b1x1. 

These equations can be e:Dpressed in matrix form as follows: 

a1 a2 a3 a4 1 

1 0 0 0 

[ ~~] + 

0 

x= 0 1 0 0 
u 

0 

0 0 1 0 
0 

y ~ [ h b, b, b, ] [ ~~ l + [OJ u 

Example 3.31 Obtain a state space model for the following chemical pro-
cessing plant. 

Y(s) 

Sensor 
A Chemical PTocessing Plant 

Solution 3.31 The system involves one integrator and two delayed inte-
grators. The output of each integrator or delayed integrator can be a state 
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variable. Let the output of the plant be defined as x 1, the output of the 
controller as xz, and the outp1d of the sensoT" as X3. It then follows that 

X1(s) 10 
X2(s) s+5 

X2(s) 1 

U(s)- X3(s) s 

X3(s) 1 
X 1 (s) s+1 

Y(s) = X1(s), 

wh'ich can be rewTitten as 

sX1(s) = -6X1(s) + 10X2(s) 

sXz(s) = -X3 (s) + U(s) 

sX3(s) = X1 (s)- X3(s) 

Y(s) = X 1 (s). 

By taking the inverse Laplace transforms of the preceding four equations, 
the state-variable equations are obtained as, 

Thus, a state space model of the system in the standard form ·is g·iven by 

[-5 10 0 l [XI] [0] 0 0 1 X2 + 1 U 
1 () -1 X3 0 

F [ 1 0 0] [ ~: ]· 

It is important to know that this is not the only state space repTesen/.ation 
of the system, i.e., it is not a unique representation. Nlany oiheT state 
space representations are possible. However, the minim1Lm nurnber of state 
variables is the smne in any state space representation of the so.1ne system. 
In the present the number of state variables is lhT"ee, r·egardless of 
what variables u're chosen as state variables. 
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3.12 Problems 
Problein 3.1 Find and sketch the response of a dynamic system described 
by the equation 

Gy + y = f(t), 

with the initial condition y(O) = 4 when the inp1d is: 
{a) f(t) = 10 
{b) j(t) = 5e-~ 
{c) f(t) = 10 + 5e-! 
{d) f ( t) = sin t + cos t 

Problem 3.2 Use the definition and properties of Laplace transforms to 
find the Laplace transform of each of the following functions: 

{a) 

Yl(t) =te-at+ e-at coswt 

{b) 

Y2(t) = te-2t cos :3t + t2 sin 2t 

(c) 

Problem 3.3 Use partial fract'ion expansions to find the inverse Laplace 
transforms {the time system responses) of the following functions 

(a) 

{b) 

{c) 

5 
yl ( s) = --,----,---,----,-

s(s + 1)(s + 10) 

2s 
Y2(s)= s2 +8s+16 

,3 + ') + 4 y; ( ) = s ~s 
3 s s4- 16 
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Problem 3.4 (a) Find the inverse Laplace tmnsform of the function 

3s2 I 2s + 2 
Y(s) = (s + 2)(s2 + 2s + 5)' 

by using a complete partial fmction e:~:pansion. 
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(b) Find the inverse Laplace lmnsform of the same function by using the 
method of completing the sq·uare. 

Problem :3.5 (a) Shov: that the following rotational rnechanical is 
repn:scnted by the diffeTential equation 

(.0 
1 

b 
2 

Negligible Jnenia 

Rotational Mechanical System 

(b) Giccn the follou,inq infoTmation: w(t) = 10. b1 = b·2 = 0 
and .J = 2 . . find T the time constant and wlss, thr stuuly slalr. 

(c) Deduce !.hr response (solution to the equation). 
(d) Solve the samt' differential equation in (a) with the du.ia iu {b) by 

using Laplace tmnsforms. 
(e) Plot the system response and (:onfirm your plot using the IVT and 

FVT. 

Problem 3.6 In the following mechanical system a velocity input, v(t) = 6 
fort 2: 0, is applied as illustmted. 

VI 

m 

A Tmnslational Mechanical 
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(a) Wrile the system's differential equation in tenns of the velocity v1 (t). 
(b) What is the time constant T and the steady state velocity u1ss for the 

system? 
(c) Given the infor-mation: v 1 (0) = 10, b1 = b2 = b3 = 1 and m = 1, 

obtain the system response. 
(d) Sketch the system Tcsponse. 
(e) Solve the same differential eq1wtion in (a) with the data in (c), by 

using Laplace transforms. 

Problem 3.7 (a) Derive the transfer function H(s) joT the general fiTst-
order system. given by 

y + O"Y = ku, 

where y(t) ·is the output, u(t) is the input, and all initial conditions are 
assumed to be zero. 

(b) Find the natural response of the first-or-der system. 
(c) When is this system-stable? 
(d) Obtain the unit step response from the naL'lLml response ·in (b). 

Problem 3.8 (a) Derive the transfer function H(s) for the general second-
order system given by 

where y(t) is the output, u(t) is the input, and all initial conditions are 
assumed to be zero. 

(b) Find the natural 1·esponse of the second-order system. 
(c) When is this system stable? 
(d) Explain how the unit step response can be obtained from the natural 

response in (b). 

Problem 3.9 Consider the RLC electTical cirw'it given below, where the 
input is cunmt ii ( t) and the outvut is voltage V0 ( t). 

,------,-----,------,-------0+ 

c R L 
i. (t) 

I 

An RLC ElectTical Circuit 
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(a) The input-output differential equation for the circuit is given by 

C .. 1 . 1 ·.( ) V0 + RV0 + LV0 = Z t . 
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1 1 
Oiven that R = 4o, L = 3H, C = 1F and assuming zero initial conditions, 
find the system transfer function H(s). 

{b) Find the impulse {natural) response of the system. 
(c) Find the unit step response of the system. 
{d) What is the relationship between the natural and unit step responses? 

Problem 3.10 Consider the following diagram where the input is force 
f(t). 

~I 

m 1--- f(t) 

Translational Mechanical System 

{a) Obtain a differential equation in x that describes the behavior of the 
system. 

{b) Use the following information: x(O) = 1, x(O) = 0, m = 1, b = 4, 
k = 3 and f(t) = 9, use Laplace transforms to show that 

X ( s) _ s2 + 4s + 9 
- s(s2 + 4s + 3) · 

(c) Find the system response x(t) and plot it. 
{d) Use the IVT and FVT to check your plot. 
(e) Given the following new information: x(O) = 0, x(O) = 0, m = 1, 

b = 2, k = 5 and f(t) = unit imp11lse, show that 

1 
X ( s) = s 2 + 2s + 5 

Use the method of completing the square to find the response, x(t) and plot 
the system response. 

Problem 3.11 The input-output differential equation of an electr·ical cir-
cuit whose input is a voltage vi(t) and the output is a voltage v0 (t), is given 
by 
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(a) Find the crpressions for the damping ratio C and the undamped nat-
ural frequency :»n. 

1 1 
(b) Given the information: R1 = H1, R2 = 2n, C = 1F, L = 2H, 

vi(t) = 2t and assum·ing zero initial conditions, use Laplace transforms to 
solve the d~fferential equation, i.e., obtain the system response. 

(c) Plot the system response. 
(d) Illustrate that the initial and final values of the response are the same 

as those obtained by using the IVT and FVT. 

Problem 3.12 Verify that the transfer .function for the circuit shown below 
is given by 

+ 
vi (t) 

H(s) = V,(s) = s2 + 2s + 1_ 
Vi ( s) s2 + 4s + 4 

20 

+ 
0.5F vc 

(b) Find the unit impulse response for the circuit. 
(c) Find the unit step response for the circuit. 

+ 

10 

Problem 3.13 Apply the initial and final value theorems to find y(o+) and 
y( oo) for- each of the following transforms. If a theorem is not applicable to 
a particular transform, explain why this is so. 

(a) 

(b) 

s3 + 2s + 4 
Y(s) = s(s + 1) 2 (s + 2) 

( ) 4s2 + lOs + 10 y s = --;;--::-;;---:::--
s3 + 2s2 + 5s 
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(c) 

(d) 

Y(s) = :l(s3 + 2s 2 + 4s + 1) 
s(s + 3)2 

s3 - 4s y ( s) - -;-----------:--;---;:,--,----,-
- (s + l)(s2 + 4s + 4) 

2f)5 

Problem 3.14 (a) !lssurning zero initial conditions, find the transfer j1m.c-
tion for a system. !.hot obeys the equation 

jj + 4y + 4y = u(t). 

(b) Fmm the transfer function obtain the unit step response of the system. 
(c) From the tmnsfer function obtain the impulse response of the system. 
(d) Differentiate the answer to part (a) and compare the result with the 

impulse Tesponse obtained in (c). 

Problem 3.15 A dynamic system is described by the state-vaTiablc equa-
tions :X o= Ax and y = Cx, where 

and x(O) = [1 2r. 
(a) Obtain the state-transition matrix ¢(t). 
(b) Find the stat.e vaTiable responses x 1 (t) and x2(t). 
(c) Find the output Tesponse y( t). 
(d) For this system verify that: 

¢(0) =I 

q;-J (t) ¢( -t) 

¢(1)¢(2) = cp(3). 

Problem 3.16 Simplify the following block diagram and obtain its overall 
transjcT function, Y(s)/ R(s). 
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Block Diagram 

Problem 3.17 Show that the transfer functions obtained by using block 
diagram algebra and Mason's rule for the following block diagram are the 
same. 

Y(s) 

Block Diagram 

Problem 3.18 Simplify the following block diagram and obtain the closed-
loop transfer function Y ( s) / R( s). 
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R(s) + 
-:E 

Block Diagram 
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Y(s) 

Problem 3.19 Simplify the following block diagram and obtain the closed-
loop transfer function Y(s)/R(s). 

~J;_ ~ 1--------r---Y_(_s) 

+~ 
'-----{ L 

-~-
Block Diagmm 

Problem 3.20 Simplify the following block diagram and obtain the closed-
loop transfcT function Y ( 8) / R( 8). 
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Y(s) 

Block Diagram 

Problem 3.21 Derive the transfer function, the input-output differential 
equation and the state-variable matrix form for the following block diagram. 

~----~1 
+ Y(s) 

1-X--=3;--..-~ 

Block Diagram 

Problem 3.22 Use block diaqrmn algebra or Mason's rule to determine 
the transfer function Y ( s) / R( s) joT the following block diagram. 
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~------------------~~----------~ 

R(s) +@-- G1 ~~~ [§]-~- G6 

l ~ ~~:_r -----' 
fllock Diagram 

Problem 3.23 The following diagram shows a contml system with condi-
tional feedback. The transfer function G( s) denotes the controlled process, 
and D ( s) and H ( s) are the controller transfer functions. 

R(s) +0 l •01--
Y(s) 

~~ 
L:cb----

Conditional Feedback Control System 

(a) Derive the transfer functions Y(s)/R(s)!N=O and Y(s)/N(s)lu=o· 
(b) Find Y(s)/ R(s)IN=O when D(s) = G(s). 
(c) Let 

G(s) - D (s) - --,--~1 0-;-0--,-
- - (s+l)(s+5)' 

and find the output response y(t) when N(s) = 0 T(t) = l(t)' (u. 1mit 
step funclion). 

(d) With G(s) and D(s) as given in part (c), select among the following 
choices of H(s) such that when n(t) = l(t) and r(t) = 0, the steady state 

Y(s) 
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value of y(t) is equal to zero. (There may be multiple answers.) 

H(s)- 10 
- s(s + 1) 

10 
H ( s) = -:--( s-+-:-1-;-;) (-s +----::72) 

H(s) = 1~(s + ~) H(s) = K (n =positive integer, select n} 
s + 2 sn 

It is important to note that the poles of the closed-loop system must all be 
in the left half s-plane for the final value theorem to be valid. 

Problem 3.24 (a) Draw a state diagram for the following state equations: 

dx1(t) 
-;It = -2x1 (t) + 3x2(t) 

dx2(t) 
-;It= -Sx1(t)- Sx2(t) + 2r(t) 

(b) Find the characteristic equation of the system. 
(c) Find the transfer functions X1(s)jR(s) and X2(s)jR(s). 



Chapter 4 

Characteristics of Feedback Control 
Systems 

4.1 Introduction 

The purpose of this chapter is to introduce the principles of feedback 
control systems and illustrate their characteristics and advantages. In sev-
eral applications, there is a need to have automatic regulation or tracking. 
Quantities such as pressure, temperature, velocity, thickness, torque, and 
acceleration have to be maintained at desired levels. Feedback control is a 
convenient way in which these tasks can be accomplished. Control is the 
process of causing a system variable to conform to some desired value or 
reference value. A system is any collection of interacting components for 
which there are cause-and-effect relationships among the variables. The 
components are connected so as to form a whole entity that has properties 
that are not present in the separate entities. ~Within this context, a con-
trol system is then defined as an interconnection of interacting components 
forming a system configuration that will provide a desired system response. 

Chapter 2 discussed the modeling of dynamic systems, while Chapter 3 
dealt with obtaining the system response from the models. In this chapter 
the objective is to influence the dynamic system response by using feedback 
control. Feedback is the process of measuring the controlled variable and 
using that information to influence the controlled variable. Modern control 
engineering practice includes the use of control design strategies to improve 
manufacturing processes, the efficiency of energy use, advanced automobile 
control, and rapid transit systems. Feedback controllers are used in many 
different systems, from airplanes and rockets to chemical processing plants 
and semiconductor manufacturing. A feedback controller can be used to 
stabilize a system that is unstable in an open-loop configuration. 

In this chapter, two case studies, the car cruise control system and the 
DC motor (both position and speed) control system are used to study, 

261 
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compare, and contrast the chief characteristics of open- and closed-loop 
control systems. The different types of controllers: Proportional (P), Pro-
portional and Integral (PI), Proportional and Derivative (PD), Proportional 
and Integral and Derivative (PID) are discussed, together with their advan-
tages and limitations. The concepts of system error, tracking, disturbance 
rejection. and system type are covered. The notions of sensitivity, bounded 
input-bounded output stability, asymptotic internal stability, and Routh-
Hurwitz stability are discussed ami illustrated using practical examples. 

4.2 Open-Loop Control vs. Closed-Loop Control 

4.2.1 Open-Loop Control 

An open-loop control system utilizes a controller and actuator to obtain 
the desired response without monitoring the actual system response (con-
trolled variable). This means that the objective of an open-loop control 
system is to achieve the desired output by utilizing an actuating device to 
control the process directly without the use of feedback. The elements of 
an open-loop control system are shown in Figure <L 1 and the block diagram 
representation is in Figure 4.2. 

Desired 
Output 

(Reference 

FIGURE 4.1 
The Elements of an Open Loop Control System 

R (s) / D(s) I U(s~ / G(s) J 

Y(s) 
~ 

FIGURE 4.2 
General Open Loop Control Block Diagram 

R(s) is the Laplace transform of the input r(t.), Y(s) is the Laplace 
transform of the output y(t), D(s) is the controller transfer function, G(s) 
is the plant transfer function, and U ( s) is the Laplace transform of the 
control signal u( t). 



Characteristics of Feedback Control Systems 263 

4.2.2 Closed-Loop Control 

In contrast to an open-loop control system, a closed-loop control system 
utilizes an additional measure of the actual output to compare the actual 
output with the desired output response. The measure of the output is 
called the feedback signal. The elements of a gencml closed-loop feedback 
control system are shown in Figure 4.3. A closed-loop control system com-
pares a measurement of the output with the desired input (reference or 
command input). The difference between the two quantities is then used 
to drive the output closer to the reference input through the controller and 
actuator. The general block diagram model of a closed-loop control system 
is shown in Figure 4.4. 

Desired~rr~~l 8--
0 tp t v-c:::::; ontro er f ctuator U U _ S1gna L__ ___ _j 

(Reference) l S' al Contro 1gn 

Actual 
Output 

Measured Sensor 
Output 

FIGURE 4.3 
The Elements of a Closed Loop Control System 

E(s) R(s)+~ I D(s) I U(s2_ G(s) 
Y(s) 

I J3 I 
L I 

FIGURE 4.4 
General Closed Loop Control Block Diagram 

R(s) is the Laplace transform of the input r(t), Y(s) is the Laplace 
transform of the output y(t), D(s) is the controller transfer function, G(s) 
is the plant transfer function, U(s) is the Laplace transform of the control 
signal u( t), E( s) is the Laplace transform of the error signal e( t), and (3 is 
the sensor gain (or transfer function). For unit feedback control systems, 
;3=1. 

4.2.3 Advantages of Closed-Loop Systems 

Closed-loop systems have the following advantagioS: 
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Faster response to an input signal 

• Effective disturbance rejection 

• Better tracking of reference signals 

e Low sensitivity to system parameter errors (e.g., errors in plant or 
controller gains) 

• Low sensitivity to changes in calibratioll errors (recalibration is 

unnecessary) 

• IVIore accurate control of plant under disturbances and internal 

variations 

e Effective and flexible control tuning by varying the control gain 

• Used to stabilize systems that are inherently unstable in the open-loop 
form 

4.2.4 Disadvantages of Closed-Loop Systems 

The following are some of the disadvantages of closed-loop systems: 

• Require the use of sensori::i which increase the system costs 

• Involve more components which leads to more costs and complexity 

• The power costs (gain) are high 

• More complex design, harder to build 

• Lc;;s convenient when obtaining the ontput measurement is either 
hard or not economically feasible 

• Initial tuning is more difficult, in particular if the baHdwidth is narrow 

• There is always a state error (with proportional controllers) 

e Tend to become unstable as the gain is increased beyond certain limits 

• Unnecessary when system inputs and the plant model are known with 
total certainty, and there are no external disturbances 

• Not always controllable 
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4.2.5 Examples of Open- and Closed-Loop Systems 

A variety of control systems (open and closed-loop) were outlined in 
Chapter 1. These include blood glucose control, manual car direction con-
trol, turntable speed control, automatic water level control and room tem-
perature control. Two running examples are used in the next sections to 
illustrate and quantitatively compare open and closed-loop systems: Speed 
cruise control design for a car and control of a DC motor. 

4.3 Car Cruise Control System (Open-Loop) 

The model of the cruise control system for a car can be established in a 
relatively simple fashion. The car is modeled as a single translational mass 
where the rotational inertia of the wheels is neglected. The input t.o the car 
system is the applied engine force j(t), which produces horizontal motion 
x(t) at speed v(t) and acceleration v(t). The frictional force bv(t), which is 
proportional to the car's speed, opposes the car's motion. The model of the 
car's cruise control system is thus reduced to a simple rnass and damper 
system as shown in Figure 4.5. 

FIGURE 4.5 
Car Cruise Control: A Single Mass Model 

Using Newton's second law, the car's equation of motion is given by 

mv +bv = f 
. b f v+ -v = -. m m ( 4.1) 

The applied force j(t) can be related to the desired speed or (reference 
speed) vr(t) by considering the steady state conditions, i.e., when all deriva-
tives are equal to zero. The reference speed is equal to the steady state 
speed V 88 (t), which is also the maximum attainable speed when a force f(t) 
is applied to the car. 
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b 
-Vss = 
m 

f 
m 

f 
{::} Vss = b = Vr· 

For example, an applied force of 500N, where b = 50N sec jm, would mean 
that the reference speed Vr is 10m/ sec. 

4.3.1 Input-Output Form 
The input-output Equation 4.1 can be rewritten with the reference speed 

vr(t) as the input as follows: 

. b b v+ -v = -vr m m 
{::} mv + bv = bvr. (4.2) 

This is a much more intuitive representation of the input-output differential 
equation as it clearly relates the desired output vr(t) and the actual output 
v(t), where the two quantities are of the same type and dimension. Most 
textbooks consider Equation 4.1 as the input-output differential equation, 
but this does not make much sense when one has to design a car's cruise 
control system (open-loop or closed-loop). This is because under such a rep-
resentation the system will have to be designed in terms of a reference force 
input f(t) (as the desired output) while the variable being controlled (the 
actual output) is the car speed v(t). Although this is technically correct, it 
is very unintuitive. 

4.3.2 Transfer Function Form 
The transfer function is obtained by taking the Laplace transform of the 

input-output Equation 4.2. When finding the transfer function, zero initial 
conditions are assumed. 

. b b v+ -v = -Vr m m 
b b 

===? sV(s) + -V(s) = -Vr(s) m m 

===? V(s) (s + !) =! Vr(s) 

b 
V(s) m 

==} Vr(s) = -+ b · s -
m 

(4.3) 
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This is the open-loop transfer function of the system with respect to the 
reference or desired car speed. 

4.3.3 Block Diagram Form 

The block diagram model of a system (open-loop or closed-loop) can 
be derived from analyzing segments of the transfer function. Any general 
open-loop system can be represented as shown in Figure 4.6. 

\f (s) I D(s) I U(s~ I G(s) ~--I _V(_s} 

FIGURE 4.6 
General Open-Loop Control System 

The specific block diagram form is determined by pairing up elements 
of this generic diagram with the corresponding segments of the specific 
transfer function being considered. In the car's cruise control problem, 
the input is the reference car speed Vr(t) and the actual car speed v(t) is 
the output. The plant gain G(s) is obtained from the transfer function in 
Equation 4.3 as 

b 

G(s)= ~· 
s+-m 

The controller is a unit proportional controller i.e. D(s) = K = 1, where 

U(s) = D(s)Vr(s). 

Hence, the block model for the open-loop car's cruise control system takes 
the form shown in Figure 4. 7. 

'f(s)[9-

FIGURE 4.7 
Open-Loop Cruise Control 

b 
Ill 

s+b 
Ill 

V(s) 
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4.3.4 State-Variable Form 

The system has one independent energy storing element (the mass), 
therefore the minimum number of variables is one, and this variable is 
chosen as v(t), the car speed. 

x=v 
. b b v = --v+ -v,.. 

m m 
The state-variable matrix form (with the output as the car velocity) is then 
given by 

y = [l]v + [O]v,.. 

If the car position x(t) is also of interest, for example in a situation where 
car position control is an objective, then an extra redundant variable x(t) 
is required to model the system. The state-variable matrix form (with both 
position and velocity as outputs) becomes 

r: 
1 

]l~l+[;] [~J b [v,.] ( L1.4) 
m 

[ t: l , r: : 1 [ ~ l + [: l v, 
(4.5) 

Example 4.1 Open-Loop Cruise Control System Design: Consider a car 
whose mass, m = lOOOkg and b = 50N sec /m, where the reference (input) 
speed of interest is 10m/ sec. Design requirements: The desired speed of the 
car is of 10 m/s {22 m.p.h.). An automobile should be able to accelerate 
up to that speed in less than 5 seconds. Since this is only a cruise control 
system, a 10% overshoot on the velocity will not do much damage. A 2% 
steady state error is also acceptable for the same reason. Keeping the above 
in mind, the following design criteria for this problem 'is proposed: 'l·ise time 
< 5 sec, overshoot < 10%, and steady state error< 2%. The step function 
in MATLAB calculates the response to a step input {lm/ sec). Hence, the 
input matrix B will have to be multiplied by the magnitude of the reference 
speed, 10m/ sec:. As a result the MATLAB command is given by 

step(A,v, *B,C,D,l,t). 
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Solution 4.1 The state-variable matrices are obtain from Equations 4.4 
and 4. 5 and t is the time of observation. 

Figures 4.8 and 4.9 show the J11J1TLAB plots of the position and speed 
responses of the car with respect to time. 

9-

8 

7 
u 
~ 6 
E. 
~5 
0 
0 

~ 4 

I 

0ol____2_Lo __ 4__,_o __ 6o _ _[a_o- 1 oo 120 
Time [sec] 

FIGURE 4.8 
Car Cruise Control (Open-Loop System) 

200 

Figure 4.8 shows the open-loop car speed response. The car achieves the 
desired speed of 10m/ sec in about 110 sec (the settling time) without any 
steady state error nor overshoot. The settling time ·is too large and does not 
satisfy the rise i'ime criterion of less than 5 seconds. However, the overshoot 
requirement (less than 10%) and the steady state error criterion (less Lhan 
2%) are satisfied. Fiqure 4. 9 shows the car position response, which, after 
the settling time of 110 sec is a. linear curve of gradient lOrn/sec. 
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FIGURE 4.9 
Car Cruise Control (Open-Loop System) 

4.4 Car Cruise Control System (Closed-Loop) 

The car's cruise control system considered so far has been open-loop. 
There is no use of a sensor and hence there is no feedback of sensor infor-
mation to correct errors in the car speed. A closed-loop car's cruise control 
system engages a speed measuring sensor, the speedometer, to measure the 
actual car speed. This measured speed is then compared with the desired 
car speed and the difference between them is then sent to a controller that 
seeks to reduce this system error. Consider the open-loop cruise control 
model 

. b b v+ -v = -Vr• m m 

In the closed-loop system the speed error, [vr(t)-v(t)], is used as the input 
into the proportional controller K, instead of the reference speed, Vr· Thus, 
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the closed-loop model takes the form 

. b b J'( ) v + -v = - i Vr - V . 
rn m 

(4.7) 

4.4.1 Input-Output Form 

The input to the whole system is still vr(t) while the output is still 
v(t) and hence the input-output differential equation form is obtained by 
rearranging Equation 4.7. 

b bK b 
1.1 + -v -+- -v = -Kvr 

m m m 

. (b b ) b v + - + - J( v = - J( v,.. 
m rn m 

(4.8) 

4.4.2 Transfer Function Form 

The transfer function form is obtained by taking the Laplace transform 
of the input-output Equation 4.8, while assuming zero initial conditions. 

mv + (b + bK)v = bKvr. 

Taking Laplace transforms it folluws that 

smV(s) + (b + bK)V(s) = bKVr(s) 

V(s) bJ( 
===? Vr(s) = ms + (b + bK) (4.9) 

This is the transfer function form of the closed-loop car's crnise control 
system with respect to the desired car speed. 

4.4.3 Block Diagram Form 

The block diagram form of the closed-loop system can be obtained in the 
same way as done in the open-loop system, that is, by comparing segments 
of the transfer function with a generic closed-loop block diagram. Any 
closed-loop (negative feedback) system can be represented by Figure 4.10, 
where f3 represents a sensor that measures the actual output. 

The measured output is compared with the desired output, and the dif-
ference between the two is used to drive the controller D(s). From the 
closed-loop equation 

b b 
v + -v = -K(vr v) m m 

=} 7~i· + v = K(11r- v). 
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\{(s)+~ E(s) 
I D(s) I 

U(s) 
G(s) 

V(s) . 

I f3 I 
I I 

FIGURE 4.10 
General Closed Loop Block Diagram 

The block diagram is established by taking the Laplace transforms of this 
equation and then comparing the elements of the resulting transfer function 
with the generic block diagram in Figure 4.10. 

rn 
bsV(s) + V(s) K [Vr(s)- V(s)] 

==? V(s) [msb+ b] = K [Vr(s)- V(s)], 

where the speed error and the control signals in Laplace transforms are, 
respectively, given by 

E(s) = Vr(s)- V(s) 

U(s) = KE(s). 

10) 

(4.11) 

The output speed is thus obtained from the control signal by the equation 

V(s) = [-b-] U(s) ms+b 

==? V(s) = [ -!!; b] U(s) .. 
s+:;n 

( 4.12) 

Putting the Equations 4.10, 4.11 and 4.12 in block diagram form produces 
Figure 4.11. 

Comparing this closed-loop block diagram for the cruise control system 
with that of the corresponding open-loop system in Figure 4.7, it can be 
seen that the only difference between them is the unit negative feedback 
loop. In such a control system the exact actual output is compared with 
the desired output, and the difference between the two is used to drive 
the controller. The assumption is that a perfect sensor = l) is used to 
measure the output. From the closed-loop block diagram the closed-loop 
transfer function can be deduced directly. 
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FIGURE 4.11 
Closed Loop Cruise Control System 
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Vr(s) ms + (b + bK) 
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V(s) 

This equation is the same as Equation 4.9, thus effectively validating the 
block diagram shown in Figure 4.11. 

4.4.4 State-Variable Form 

Considering a single state variable, the car speed v(t), the state-variable 
form is obtained from the closed-loop input-output differential equation, 

. (b b ) b v + - + - K v = - K VT 
m m 1n 

[v] = [- b(l.: K)J [v] + [b:J vr-

v=[l]v+[O]vr· 

If motor position monitoring is also required then both x(t) and v(t) are 
chosen as state variables. Iu this case, there is a redundant state variable 
x(t). Thus the state-variable matrix form of the position control system 
model (where both position and velocity are outputs) is represented as 
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follows: 

[~] r: b(l~K) 1 [~]' [b; l (v,] 

[ ~;] ~ l: : 1 [ ~ l + [: l v, 

Example 4.2 Consider a car of similar characteristics and the same de-
sign Teq?Lirements as those used for the open-loop system, i.e., rn = 1 OOOkg 
and b = 50N sec jrn, where the reference (inp?Lt) speed of interest is lOrn/ sec. 
The step function in MATLAB calculates the response to a step input 
(lrn/ sec). Hence, matrix B will correspondingly have to be multiplied by 
the magnitude reference speed lOrn/ sec. The MATLAB command is the 
same as that in the open-loop system, but the system matrices are different, 
as shown below 

Solution 4.2 step(A,vr*B,C,D,J,t) 

(4.13) 

4.12 and 4.13and show the MATLAB plots of the. position and 
speed Tesponse.s of the. car with respect to time. 

in Fig·ure 4.12 shows the car speed response for propoTtional contr-ol gain 
of K = 20. There is a steady state error of 5% from the desired speed of 
lOrn/ sec, a settling time of 5sec and no overshoot. There is a dramatic im-
provement from the open-loop system on settl·ing time (llOsec to 5sec). The 
disadvantage of the proportional closed-loop control system with respect to 
the open-loop one is that there is always a steady state error, whereas there 
is no steady state error in the open-loop system. Although large values of 
K give low steady state errors, they involve high energy consumption, large 
(impm.cLical) car accelerations and might lead to instabilities. Although it is 
desimblc to reduce the steady state error, there has to be a trade-off between 
this objective and these negative tendencies. From the plot, it is clear that 
the closed-loop system satisfies all the three design reqnin;ments {rise-t·ime, 
overshoot and steady state). Figure 4.13 shows the corTesponding car po-
sit·ion response., which, after the settling time (5sec), is a linear curve of 
gradient 9.5rn/ sec. 
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FIGURE 4.12 
Car Cruise Control (Closed Loop System) 

4.5 DC Motor Speed Control (Open-Loop) 

A DC motor is a good example of a an electromechanical system, that is, a 
system that contains mechanical and electrical componentr:; interconnect,ed 
to provide a composite function. It il:l a common actuator in a variety 
of engineering systems, including mechatronics and robotics. The DC 
motor directly provides rotary motion and, when coupled with cylinders 
and cables, it can provide translational motion. The electric circuit of the 
armature and the free-body diagram of the rotor are shown in Figure 4.14. 

The modeling equations are obtained by using electrical circuit laws 
(KV L, KCL etc) and basic mechanics (Newton's laws). The armature 
is driven by the circuit shown in Figure 4.14 and the motor torque T ir:; 
related to the armature current i( t) by a constant factor K, while the rotor 
and shaft are assumed to be rigid. Hence, by summing up the torques on 
the rotor's free-body diagram in Figure 4.14, an expression for the current 
i(t) in terms of the motor angular speed and acceleration is obtained as 
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FIGURE 4.13 
Car Cruise Control (Closed Loop Control) 

follows: 

fiJ+bB = T=Ki 
fiJ+bif 

{:=:=} i = -~
K 

The back emf is related to the angular speed B(t) such that 

di . 
L- +Ri = v-Ke dt ' 

(4.14) 

( 4.15) 

where v(t) is the supply voltage. Equations 4.14 and 4.15 are the core 
equations that can be used to produce different forms of the mathematical 
model for a DC motor. 

4.5.1 Input-Output Form 
In this form of the model the system is expressed in terms of the input 

voltage v(t) and its derivatives, and the output angular speed w(t) and its 
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i(t) R L 

+ 
0 

v(t) e=KS 

FIGURE 4.14 
Circuit of the Armature and the Rotor Free-Body Diagram 

derivatives, while eliminating all other variables. 

L~ (fe + biJ) R (fe + bB) = _ KiJ 
dt K + K v 

J L · · · Lb.. RJ ·· Rb . . - e + -e + -e + -e = v - KB 
K K K K 

J L .. Lb . RJ . Rb -w+ -w+ -w+ -w = v-Kw K K K K 

JL Lb RJ Rb 
-c.J+ -w+ -w+ -w+Kw = v K K K K 

JLw + Lbw + RJw + Rbw + K 2w = Kv 

(JL)w + (Lb + RJ)w + (Rb + K 2 )w = Kv. (4.16) 

Equation 4.16 is the input-output differential equation model where the 
input is the voltage v(t) and the output is the angular speed w(t). Now, 
since the objective is to design a motor speed control system, it will be more 
useful to express the input-output differential equation with the desired 
(reference) motor speed wr(t) as the input. This reference speed (maximum 
attainable speed) can be deduced from Equation 4.16 as the steady state 
speed, which is a function of the input voltage, where all the derivatives 
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are set to zero, i.e., w = w = 0. 

Kv 
B Wr = W s s = -:-::-:---::=-:-

(Rb + K 2 ) 

(Rb + K 2 )wr 
B v = -'-----::-::-___.:___ K . ( 4.17) 

Substituting this expression of v(t) in Equation 4.16 gives the input-output 
differential equation model with respect to the desired DC motor speed. 

(JL)w + (Lb + RJ)w + (Rb + K 2 )w = (Rb + K 2 )w,.. ( 4.18) 

This is a much more useful form, as it depicts as the input lhe desired motor 
speed w(t), where the motor speed w(t) is the variable being controlled or 
monitored. Most textbooks consider Equation 4.16 as the input-output 
differential equation, which does not make much sense when one has to 
design a motor speed control system (open-loop or closed-loop). This is 
because under such a representation (Equation 4.16) the system will have 
to be designed in terms of a reference voltage input v(t) (as the desired 
output) while the variable being controlled (the actual output) is the motor 
angular speed w(t). While this is not incorrect and can be done, it is counter-
intuitive and unnecessary. 

4.5.2 Transfer Function Form 

Two transfer functions can be obtained, one with respect to the input 
voltage and the other with respect to the desired motor speed. The transfer 
functions arc obtained by taking the Laplace transform of the input-output 
Equations 4.16 and 4.18. First, the transfer function with respect to the 
input voltage is considered. 

KV(s) = [s2 (JL) + s(Lb + RJ) + (Rb + K 2)] D(s) 

===? _n (_s) = ..,--~-:---o----:-:K,--,:-:--...,.-::-c:---.::-:-
V(s) (JL)s 2 + (Lb + RJ)s + (Rb + K2) 

Alternatively, this transfer function can be obtained by first finding the 
Laplace transforms of the angular speed D(s) and the voltage V(s), and 
then finding the ratio, 

n(s) 
V(s) 

s8(s) 
V(s) 

(from w =e). (4.19) 

The exprc;;sion for ·v(s) in terms of 8(s) is obtained by using the Laplace 
transform of the motor circuit Equation 4.15 and then substituting for the 
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Laplace transform of the motor current I ( s). The Laplace transform of 
Equation 4.15 gives 

(Ls + R)I(s) = V(s)- KsG(s) 

=? V(s) = (sL + R)I(s) + KsG(s). ( 4.20) 

The Laplace transform of the motor current I(s) is obtained from Equation 
4.14 as follows: 

s(Js + b)8(s) = KI(s) 

I( ) = s(Js +b)G(s). 
==?s K 

Substituting this expression of I(s) in Equation 4.20 leads to 

V(s) = (sL + R) ( s(Js +;)e(s)) + KsG(s) 

= s8(s) [(sL+R) (Js;b) +K] 

= sG(s) [ (sL + R)(~ +b)+ J{2 J 

D(s) sG(s) K 
==? -V (-s) = -V-( s-) = -:-( s-:::L_+_R=):-c(-::J:--s -+_,.b.,-) -+-::Kc::;:-2 

K 
( 4.21) 

(JL)s2 + (Lb + RJ)s + (Rb + K2). 

Similarly the transfer function with respect to the desired motor speed 
wr(t) can be obtained by the two methods employed above. Taking Laplace 
transforms of the input-output Equation 4.18 gives 

D(s) Rb + K 2 

Dr(s) - (JL)s2 + (Lb + RJ)s + (Rb + K 2). 
(4.22) 

This transfer function is more intuitive and relevant to the DC motor speed 
control than that given in Equation 4.21. However, it is important to note 
that Equation 4.21 and Equation 4.22 have the same characteristic equa-
tion, which means that they are essentially desc:riuing the same dynamic 
system. From Equation 4.22, the block diagram forms of both open-loop 
and closed-loop speed control systems with the desired motor speed as ref-
erence can be easily derived. 
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4.5.3 Block Diagram Form (Open-Loop) 

The block diagram model of a system can be derived by analyzing seg-
ments of the transfer function in Equation 4.22. Any general open-loop 
system can be represented as shown in Figure 4.6. The specific block dia-
gram form is determined by identifying what the elements of this generic 
diagram correspond to in the particular system under consideration. In 
the motor speed control problem, the input is the reference car speed wr(t) 
and the actual car speed v(t) is the output. The plant function G(s) is 
obtained from the transfer function in Equation 4.22. The controller is a 
unit proportional controller i.e. D(s) = Kp = 1. Thus, the block diagram 
form for the motor speed control system is obtained as illustrated below in 
Figure 4.15. 

U(s) Rb+K Q(s) 

(JL )s 2 + (Lb+RJ)s + Rb + K 

FIGURE 4.15 
Open-Loop Motor Speed Control 

4.5.4 State-Variable Form 

There are two independent energy storing elements and hence two vari-
ables, the armature current i(t) and the motor angular speed w(t) are cho-
sen. From the motor Equations 4.14 and 4.15 it follows that 

b · K --B+ -i 
J J 

. b K. 
9 w = --w+ -~ 

J J 
K · R 1 

i = --8 - -i + -v 
L L L 

. K R 1 
9i=--w--i+-v L L L. 
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Extracting the coefficients of the state variables and the input v( t), produces 
the state-variable form 

[ t] 
b K 
J J 

K R 
L L 

y = [ 1 0 ] [ ~] + [0] [v] . 

This is the state-variable matrix system with respect to the input voltage 
v(t). The state variable system using the desired motor speed as the input is 
obtained by substituting for v(t) in the above matrix system, i.e., replacing 
it by the expression 

(Rb + K 2 )wr 
V= K . 

The state-variable form, which is now more meaningful, becomes 

b K 
-

[~]I [ Rb I:K' l [ t] 
J J 

K R [wr] 

L L 

( 4.23) 

y = [ 1 0 ] [ ~] + [0] [wr]· (4.24) 

This is a much more intuitive and practical state-variable form of the motor 
speed control. 

4.6 DC Motor Position Control (Open-Loop) 

In order to achieve motor position control, an extra state variable e is 
required in addition to the variables w and i. From the motor Equations 
4.14 and 4.15 it follows that 

fB+biJ = Ki 
di . 

L dt + Ri = v- Ke. 
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4.6.1 Input-Output Form 

This form is obtained by proceeding just as for the speed control case 
but expressing the equations in terms of the angular displacement e (and 
its derivatives) and not w (and its derivatives). In particular from Equation 
4.16 it follows that 

(JL)w + (Lb + RJ)w + (Rb + K 2 )w = Kv 

~ (JL).if + (Lb + RJ)B + (Rb + K 2 )fJ = Kv. (4.25) 

Similarly, with respect to the desired speed the input-output differential 
equation is given by 

(JL)·e· + (Lb + RJ)B + (Rb + K 2 )fJ = (Rb + K 2 )wr. (4.26) 

4.6.2 Transfer Function 

The transfer function can be obtained from that of the speed control 
system. From Equation 4.19 it follows that 

S1(s) s0(s) 
-- = --<=? 
V(s) V(s) 

0( s) S1(s) 1 
V(:) = sV(s) =-; (Speed control transfer function) 

K 
s[(sL + R) (Js +b)+ K2] 

K 
s [(JL)s2 + (Lb + RJ)s + (Rb + K 2 )] 

The transfer equation with respect to the desired speed is obtained in a 
similar fashion. 

Sl(s) s0(s) 
--=--<=? n, (s) Slr(s) 

0(s) Sl(s) 1 
n----( ) = -::;:::--( ) = - (Speed control transfer function) 
~6r s s~2r s s 

s[(sL + R) (Js +b)+ K2] 

Rb+K2 

s [(JL)s2 + (Lb + R.J)s + (Rb + K2)]. 
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4.6.3 State-Variable Form 

In order to achieve motor position control an extra state variable B( t) is 
required in addition to the variables w(t) and i(t). 

iJ=w 
.. b · K () = w = --11 + -i 

J J 

·. K R. Rb+K2 
z=--w--z+ LK Wr. L L (4.27) 

0 1 0 
0 

[{] b K 

[~] + 
0 J J 0 [wr] 

K R Rb+K2 
0 --

L L LK 

( 4.28) 

( 4.29) 

If it is desired to control both the motor angular speed and its position, 
then the output Equation 4.29 is expanded to include the speed as follows: 

(4.30) 

It is important to note that there are two independent energy storing 
elements in the DC motor system, the inductor ( ekctrical) and the rotor 
(mechanical). Hence, when motor position control is required, the number 
of variables is greater than the number of independent energy storing ele-
ments. Thus, the third variable() is a redundant state variable, which means 
the number of variables is not minimized. This fact is amply manifested by 
observing that the rows of matrix A in Equation 4.28 arc not independent, 
whereas those of A in Equation 4.23 are independent. This means that for 
a system involving redundant states the rank of A is less than the number 
of variables, whereas for a system without redundant states the rank of A 
is the same as the number of variables. Put differently, A is not invertible 
for a system with redundant variables. 
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Example 4.3 The system matrices are different as shown below. In this 
example, the following values for the physical parameters are assumed. 
These values were derived by experiment from an actual motor. 

moment of inertia of the rotor J = 0.01kg.m2 j s 2 

damping ratio of the mechanical system b = 0.1Nms 
electromotive force constant K = O.OlNm/Amp 
electric resistance R = 1S1 
electric inductance L = 0.5H 
input (wr): desired motor angular speed 
output (0): position of shaft 

Solution 4.3 The system matrices for both speed and position contn;l are 
given below 

A= 

0 1 0 

0 

0 

b 
J 

K 
L 

K· 
J 

R 
L 

'B= 

0 

0 

Rb+K2 

LK 

' D= 

(4.31) 

FiguTe 4.16 and Fig·ure 4.17 show the MATLAJJ plots of the speed and 
position responses of !.he motor with Tespect to time. 

FiguTe 4.16 shows the open-loop motoT speed Tesponse. The motor achieves 
the desired speed of 1 md/ sec in about 5 sec (the seitling time) without any 
steady state CITOr or overshoot. The settling time is too large and does not 
satisfy the rise t.ime criterion of less than 1sec. However, the overshoot 
requirement (less than 20%) and the steady state error criterion (less than 
5%) are satisfied. Figure 4.17 shows the car position response which after 
the settling time of 5sec is a linear curve of gradient 1radj sec. 

4. 7 Motor Speed Control (Closed-Loop) 

4.7.1 Input-Output Form 

Consider the open-loop motor speed control input-output differential 
equation model, 
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FIGURE 4.16 
DC Motor Speed Control (Open-Loop) 

In the closed-loop system, the motor speed error, wr(t) ~ w(t), is used 
as the input into the proportional controller Kp, instead of the reference 
speed, wr(t). The input to the system is still wr(t) while the output is still 
v(t). Thus the clm;ed-loop input-output differential equation model takes 
the form 

(JL)w + (Lb + RJ)w + (Rb + K 2 )w = (Rb + K 2 )Kp(wr ~ w) 

(JL)w + (Lb + RJ)w + (Rb + K 2 )(1 + Kp )w = (Rb + K 2 )Kpwr. (4.32) 

4. 7.2 Transfer Function Form 

The transfer function form is obtained by taking the Laplace transform 
of the input-output Equation 4.32 while assuming zero initial conditions. 

D(s) 
nr(s) (JL)s 2 + (Lb + RJ)s + (Rb + K 2 )(1 + Kp). ( 4.33) 

From this transfer function equation the block diagram of the closed-loop 
speed control system with the desired motor speed as reference can be 
derived. 
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3 4 7 8 9 10 

FIGURE 4.17 
DC Motor Position Control (Open-Loop) 

4.7.3 Block Diagram Form (Closed-Loop) 

The block diagram form of the closed-loop system can be obtained in the 
same way as was done in the open-loop system by comparing segments of 
the transfer function with a generic closed-loop block diagram. The input 
is the reference motor speed wr(t) and the output is the actual motor speed 
w(t), Any closed-loop motor speed control system can be represented by 
Figure 4.18. From the closed-loop input-output differential equation, 

E(s) I D(s) I U(s). G(s) 
O(s) 

I f3 I 
I I 

FIGURE 4.18 
General Closed-Loop Control Block Diagram 
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(JL)w + (Lb + RJ)w + (Rb + K 2 )w = (Rb + K 2 )Kp(w,- w). 

The block diagram is established by taking the Laplace transform of this 
equation and then comparing the elements of the resulting transfer function 
with the generic block diagram in Figure 4.18. 

(JL)s 2 fl(s) + (H + RJ)sfl(s) + (Rb + K 2 )fl(s) = (Rb + K 2 ) x 

KI'[fl 7 (s)- fl(s)] 

12(s)[(JL)s2 + (Lb + RJ)s + (Rb + K 2 )] = Kp(Rb + (s)- D(s)], 

where the speed error and the control signals in Laplace transforms are 
given, respectively, as 

E(s) = D,(s)- fl(s) 
U(s) = KpE(s). 

( 4.31) 

(4.35) 

The output speed is thus obtained from the control signal by the equation 

n s = I (Rb + K2) . ] ' . 
. () l(JL)s2 +(Lb+RJ)s+(Rb+K2) L(s). ( 4.:36) 

Putting the Equations 4.34, 4.35, and 4.36 in block diagram form (with 
unit negative feedback, i.e., (3 = 1) produces Figure 4.19. 

E(s) I KP j 
U(s) Rb+K2 O(s) 

r 
(JL)s'+(Lb+RJ)s+Rb+K 

FIGURE 4.19 
Closed-Loop Control Dlock Diagram (Proportional Control) 

Compare this closed-loop block diagram for the motor speed control sys-
tem with that of the corresponding open-loop system in Figure 4.15. Ic can 
be seen that the only difference between them is the unit negative fccdlmck 
loop. From the closed-loop block diagram the closed-loop transfer function 
can be deduced directly. 
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D(s) 
Dr(s) 
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r Kp [ (JL).s2 + (L~~ ~~:~ (Rb + K2)] l 
[ (Rb + K 2 ) ] 

1 + Kp (JL)s2 + (Lb + RJ)s + (Rb + K 2 ) 

D(s) Kp(Rb + K 2 ) 
=} ---- = ~~~~------~--~~--~~----~ Dr(s) (JL).s2 + (Lb + RJ)s + (Rb + K 2)(1 + Kp). 

Comparing this equation with Equation 4.33, it is clear that the two are 
the same, thus validating the block diagram. 

4.7.4 State-Variable Form 

The state-variable form for the closed-loop control is established in the 
same way as that for the open-loop system. The key difference is that 
the desired speed wr(t) in the state variable Equation 4.27 is replaced by 
Kp[wr(t)- w(t)] such that, 

. K R Rb+K2 
i = --w--i+ Kp[wr.-w] 

L L LK 

The other two state-variable equations are not affected, 

iJ=w 
. b K. 

w = --w+ -z. 
J J 

Hence the closed-loop control system state-variable model, with both Lhc 
motor angular speed wr(t) and angular position e(t) as outputs, and the 
desired speed as the input, is given by the following two equations; 
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[t] 

+ 

0 

0 

1 

b 
J 

O _ [K Kp(Rb + K2)] 

L + LK 

0 

0 

Kp(Rb + K 2 ) 

LK 

[w,.] 

[;;] [: : : j[ ;] + [:] [w,] 

0 

K 
J 

R 
L 
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Example 4.4 The system matrices are different as shown below. In this 
example, the .following values for the physical parameters are assumed. 
These values were derived by experiment from an actual motor. 

moment of inertia of the rotor J = O.Olkgm2 / s2 

damping ratio of the mechanical system b = O.lNms 

electromotive force constant K = O.OlNm/Amp 

electric resistance R = H1 

electric inductance L = 0.5H 

input (w,. ): desired motor angular speed 

output (B): position of shaft 

Solution 4.4 The system matr'ices for both speed and position control can 
be obtained from the previous section. They are given by the following 
matrices: 
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0 

0 
A= 

1 

b 
J 
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0 

]( 

J 

0 

B-' -
0 

0 - I]( Kp(Rb + ](2)] 
l L + LK 

R 
L 

Kp(Rb + K 2 ) 

LK 

Figure 4.16 and Figure 4.11 show the MATLAJJ plots of the speed and 
position responses of the motor with respect to time. 

1.2 

0. 

0.2 

FIGURE 4.20 

2 
Time [sec] 

DC Motor Speed Closed-Loop Control (Proportional) 

There is a steady state error of 10% from the desired motor speed of 
1 rad/ s, an overshoot of about 20% and a settling time of 1 second. A 
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dramatic improvement is obtained over the open-loop system on settling 
time (3 sec to 1 sec). The disadvantage of the proportional closed-loop 
control system with respect to the open-loop one is that there is always a 
steady state error whereas there is no steady state error in the open-loop 
system. As the value of the proportional controller is increased, the steady 
state error is reduced, but there are practical limits to the increase of Kp. 
If this gain is too big this may lead to instability and impractical settling 
time (too short). Also, a large gain means excessive energy consumption. 
The motor position response is a curve, which, after the settling time of 
1 sec is a linear curve of gradient 0.9 rad/ sec. 

4.8 Modeling of PID Controllers 

Proportional feedback control can reduce error responses to disturbances, 
however, it still allows a non-zero steady state error. In addition, pro-
portional feedback increases the speed of response but has a much larger 
transient overshoot. When the controller includes a term proportional to 
the integral of the error, then the steady state error can be eliminated, 
though this comes at the expense of the further deterioration in the dy-
namic response. Finally, addition of a term proportional to the clcri vative 
of the error can clamp the dynamic response. Combined, these three kinds 
of control form the classical PID controller, which is widely used in the 
process industries and whose tuning rules have an interestiug history. The 
establishment of the three-term controller is considered term by term. 

E(s) U(s) Rb+K2 O(s) I D(s) I 

r (JL)s 2 +(Lb+RJ)s+Rb+K2 

FIGURE 4.21 
Closed-Loop Motor Speed Control (PID) 

In the closed-loop system already discussed (Figure 4.21) the proportional 
controller K p is replaced by a general controller D( 8) which can be a P, PI, 
P D or PI D controller. The individual control components can be analyzed 
and their representation established. 
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4.8.1 Proportional Controller (P) 

The proportional controller has already been developed in previous sec-
tions. The derivation of its model is presented here for completeness. When 
the feedback control signal is made to be linearly proportional to the error 
in the measured output, it is called proportional feedback. The general 
form of proportional control model is obtained as follows: 

u(t) = Kp [T(t)- y(t)] 

= Kpe(t) 

U(s) = KpE(s) 

D( ) = U(s) 
3 E(s) 

=Kp. 

where E(s) = R(s)- Y(s) 

The proportional controller can be viewed as an amplifier with a "knob" 
to adjust the gain up or down. The system with proportional control may 
have a steady state offset (or drop) in response to a constant reference input 
and may not be entirely capable of rejecting a constant disturbance. For 
higher-order systems, large values of the proportional feedback gain will 
typically lead to instability. For most systems there is an upper limit on 
the proportional feedback gain in order to achieve a well-damped stable 
response, and this limit may still have an unacceptable steady state error. 
Therefore, there is a limit on how much the errors can be reduced by using 
proportional feedback only. One way to improve the steady state accuracy 
of control without adding extremely high proportional gains is to introduce 
integral control, which is discussed in the following section. 

4.8.2 Proportional and Integral Controller (PI) 

The primary reason for integral control is to reduce or eliminate constant 
steady state errors, but this benefit typically comes at the cost of worse 
transient response. 
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Integral feedback has the form 

u(t) = Kp [r(t)- y(t)] + Kr fat [r(t)- y(t)] dt 

= Kpe(t) + Kr .[ e(t)dt 

K1 
U(s) = KrE(s) + -E(s) 

s 

= E(s) ( Kp +~I) 

D( ') = U(s) 
8 E(s) 

Kr =Kp+-
s 

Kps+Kr 
s 
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(4.37) 

(4.38) 

This is how a generic PI controller is modeled, where the two parameters or 
gains Kp, and Kr are chosen to give the desired system dynamics. These 
gains are normally known as the proportional and integral gains, respec-
tively. This feedback controller has the primary virtue that it can provide 
a finite value of control signal with no error signal input e( t). This comes 
about because u( t) is a function of all past values of c (l) rather than just the 
current value, as in the proportional case. Therefore, past errors e "charge 
up" the integrator to some value that will remain, even if the error becomes 
zero and stays there. 

Several limitations of proportional control are resolved by integral con-
trol. The steady state response to this class of load disturbance is com-
pletely eliminated. Thus, as long as the system remains stable, the system 
output equals the desired output regardless of the value of Kp. The final 
concern is with the dynamic response. If the designer wishes to increase 
the dynamic speed of response with large integral gain, then the response 
becomes very oscillatory. A way to avoid this behavior in some cases is to 
use both proportional and integral control at the same time. 

In general, even though integral control improves the steady state track-
ing response, it has the effect of slowing down the response while the over-
shoot is kept unchanged. With both proportional and integral control, it 
can be seen that by choosing Kp and Kr the designer has independent con-
trol over two of the three terms in the characteristic terms and can provide 
better transient response than can be done with integral control alone. 
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4.8.3 Proportional and Derivative Controller (PD) 

Derivative feedback (also called as rate feedback) has the form 

d 
Kn dt [r(t)- y(t)]. 

It is used in conjunction with proportional and/or integral feedback to 
increase the clamping and generally improve the stability of the system. In 
practice, pure derivative feedback is not practical to implement, however, its 
approximations can be implemented. Another reason derivative feedback 
is not used by itself is that if the error signal e(t) remains constant, then 
the output of the derivative controller would be zero and a proportional or 
integral term would be needed to provide a control signal at this time. In 
some cases, proportional and derivative control are combined to yield the 
Proportional and Derivative (PD) controller. The PD controller transfer 
function model is obtained as follows: 

d 
u(t) = Kp [r(t)- y(t)] + Kn dt [r(t)- y(t)] 

de(t) 
= Kpe(t) + Kn--;;_:t 

U(s) = KpE(s) + KnsE(s) 

= E(s) (Kp + Kns) 

D( ) = U(s) 
3 E(s) 

= Kp + Kos. 

In the derivative control the correction depends on the rate of change of 
error. As a result, a controller with derivative control exhibits an anticipa-
tory response: Proportional-derivative behavior leads the proportion-only 

1 
action bv -.. - seconds. Derivative control may be introduced into the feed-

" Kn 
back loop in two ways, to the tachometer in a DC rnotor, or as a part of 
a dynamic: compensator in the forward loop. In both cases the closed-loop 
characteristic equation is the same but the zeros from r-(t) to y(t) are, of 
course, different; also, with the derivative in feedback, the reference is not 
differentiated, which may be a desirable result. 

4.8.4 Proportional, Integral & Derivative Controller 

For control over steady state and transient errors all the three control 
strategies discussed so far should be combined to get proportional-integral-
derivative (PID) control. Here the control signal is a linear combination of 
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I 

I 

p ~ 
PID ~ 

0.08 10 

the error, the time integral of the error, and the time rate of change of the 
error. All three gain constants are adjustable. The PID controller contains 
all three control components (proportional, derivative, and integra.!). Its 
transfer fullc!.ion model can be cleri ved as follovvs: 

d rt 
u(t) = Kp [r(t)- y(t)] + Kv dt [r(t)- y(t)] + K1 Jo [r(t)- y(t)] dt 

d (t) ;·t = Kpe(t) + Kv ~t + Kr 0 e(t)dt 

• , . Kr U(s) = KpE(s) + KvsE(s) + -E(s) 
s 

= E(s) ( Kp + ~r + Kvs) 
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FIGURE 4.23 
Transient Responses to a Step Reference Input 

Therefore, 

D(s) = U(s) 
E(s) 

KI =Kp+-+KDs s 
KDs 2 + Kps + K1 

s 

r----

r----

0.10 

(4.39) 

( 4.40) 

Thus, the corresponding block diagram representation takes the form shown 
in Figure 4.24. This is how a generic PID controller is modeled where 
the three parameters or gains Kp, K 1, and KD are chosen to give the 
desired system dynamics. These gains are normally known respectively as 
the proportional, integral, and derivative gains. 
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E(s) I D(s) I U(s~ E(s) U(s) 

FIGURE 4.24 
PID Controller: Block Diagram Form 

In order to design a particular control loop the engineer merely has to 
adjust the constants ](p, K 1 and KJJ in the above equation to arrive at 
acceptable performance. This adjustment process is called tuning the con-
troller. Increasing Kp and K 1 tends to reduce system errors but may not be 
capable of also producing adequate stability, while increasing K D tends to 
improve stability. For example, the characteric;tic equation vvill have three 
coefficients and three parameters (KF, K 1 and Kv), and thus in theory the 
poles of such a system can be set wherever desired. The combination of the 
three control components in this system yields complete control over the 
system dynamics. The PID controller provides both an acceptable degree 
of error reduction and an acceptable stability and damping. PID controllers 
are so effective that PID control is standard in processing industries such 
as petroleum refining, papermaking, and metalworking. 

An alternative and convenient forrn of the PID controller is obtained by 
expressing the three controller gains (Kp, K 1 and KD) in terms of one 
controller gain and two time constants ( K p, T! and TD) as follows: 

KI 
D(s) = Kp -+-- + KDs s 

= Kp ( 1 + T~s + Tns), 

(4.41) 

( 4.42) 

where the three parameters (Kp, T1 and TD) now give a complete descrip-
tion of the PID controller. Kp is the proportional gain (as before), T1 is 
the integral (reset) time constant, ancl TD is the derivative time constant. 
The two PlD controller models given in Equations 4.41 and 4.42 are used 
interchangeably where, 

The alternative models for the PI and PD controllers are easily deduced 
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Controller Benefits Drawbacks 
steady state error 

p (Kp) simple large overshoot & settling time 
cheap poor transient response 

prone to instability (large gains) 
poor damping 

I (KI) eliminates steady large overshoot & settling time 
state error poor transient response 

reduces stability 
increases damping 
reduces overshoot steady state error 

D (Kn) reduces settling time 
improved transients cannot be used alone 

improves stability 

Table 4.1 Summary of PID Controller Characteristics 

from Equation 4.42 as follows: 

KI D(s) = Kp +-s 

=Kp (1+-1) 
TJS 

D(s) = Kp + Kns 

= Kp (1 + Tns). 

(PI) 

(4.43) 

(PD) 

( 4.44) 

Using the models of PID controllers that have been exhaustively de-
veloped in this section, the characteristics of the different types of these 
controllers (P, PI, PD and PID) can be studied, illustrated, and verified. 
This is achieved by implementing the controllers in MATLAB for systems 
with simple reference inputs and disturbances such impulse, step, and ramp 
functions 

4.8.5 Summary of PID Controller Characteristics 

The benefits and limitations of.the three components of a PID controller 
(P, I and D) are summarized by studying the system responses of a system 
to a unit step disturbance (Figure 4.22 ) and unit step reference input 
(Figure 4.23), when three controllers; P, PI and PID, are used. The effects 
of the three components are deduced from the plots in Figure 4.22 and 4.23 
and summarized in Table 4.1. 

Example 4.5 Consider the DC closed-loop .motor control system consid-
ered in previous examples. Instead of the Kp use the D(s) =PI, PD or 
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PID. The MATLAB code is shown in a later sect'ion. 
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FIGURE 4.25 
DC Motor Speed Closed-Loop Control (PID) 

Solution 4.5 The overshoot is reduced to 0%, the response time is reduced 
to lsec, Lhe steady state error is reduced to 0%. There is also improved 
stability, damping, and general system response. The motor position re-
sponse is a curve, which, after the settling time of 1 sec, is a linear curve 
of gradient lrad/ sec {the desired motor speed). These results demonstrably 
illustrate the benefits of the three elements of the PID controller and how 
they compensate for each other's limitations. The state steady error in-
troduced by the proportional controller {P), is eliminated by the integmtoT 
(I). The poor system transient response and pom· stabdity introduced by the 
integmtor (I) aTe resolved by the derivative controller (D), which improves 
both system damping and stability. 
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4. 9 MAT LAB Implementation 

4.9.1 State-Variable Form 

If the state-variable matrices (A, B, C, D) are available for the open-loop 
and closed-loop systems, then the system rc:oponse of the system to differ-
ent input functions such as step, impulse, and ramp arc easily obtained 
in l\JATLAI3 (Appendix B). For example, with a iitcp reference input, 
Wr ( t) =constant, the system responses with respect to time t are obtained 
as follows: 

Yol = step(Aaz, Wr * Baz, Caz, Daz, 1, t); 
Ycl = step(Acl, Wr *Bel, eel, Del, 1, t); 

where the number 1 indicates that there is one input. In most complicated 
closed-loop systems the state-variable matrices are not readily available. In 
these cases it is easier to use the transfer function model. 

4.9.2 Transfer Function 

From the open-loop or closed-loop transfer function, which is expressed as 
a ratio of two polynomials in s, the numerator and denominator consisting 
of coefficients of these polynomials are obtained: numol and denol for 
open-loop systems, nv,mcl and dencl for closed-loop systems. These are 
then used to simulate the response of the system to input different functions 
such as step, impulse and ramp. For example, for a step input the open-loop 
system response is obtained as follows: 

T = D( )G( ) = n(s) numol 
ol S S ()~d l m s eno 

Yal = step(numol, denol, t). 

Using the closed-loop transfer function, the closed-loop system response for 
a step input is similarly computed. 

D(s)G(s) q(s) numcl 
1~' 1 = 1 + (3D(s)G(s) = p(s) ~ denc:l 

Ycl = step(numcl, dencl, t). 

It is not necessary to completely establish the open-loop or closed-loop 
transfer function before .fviATLAB implementation. MATLAB can be used 
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Lo compute these from Lhe Controller D( s), plant gain G(s), by using the 
principle of convolution. Unity feedback is assnmed ({3 = 1). The plant 
gain G ( s) is represented by 

G(s) = !!_(s) ~ num. 
a(s) den 

The controller D( s) is repreoented by the block diagram in Figure 4.24 
and hence its trant>fer function can be expressed as follows: 

( ) f(ns 2 + Kps + K 1 g(s) numcon 
Ds= =--~ · s f(s) dencou 

Therefore,[numol, denol] can be calculated from [num, den] and 
[numcon, dcncon], and then [numd, dencl] from [numol, denol]. Hence 

the general ::;cquence of J\IATLAB commands will be as follows: 
nurn=(- - -}; 
den=(- - -}; 
nurncon= (K u, K p, K r}: 
dencon=(l OJ; 
nurnol=conv(mtrn, numcon); 
denol=conv( den, dencon); 
(nurncl, dencl}=cloop(numol, denol); 
y_ol=step (rmrnol, denol, 
y_cl= strp ( nmncl, dencl, I);. 

4.9.3 Sample MATLAB Code: Motor Speed PID Control 

I'he sample J\1ATLAB code given below is that of the closed-loop control 
system for the DC motor discussed in section using a PID controller. The 
results of this implementation have already been presented. This code helps 
to illustrate how control systems can he implemented using J\JATLAB . 

. % DC Moi.or Speed Closed-Loop Control (PID) 
t=input( 'Input the amount of time to look at in sec:'); 
J=O.Ol; b=O.l; K=0.01; R=1; L=2; 
Kp=10; K1=S; K o=1; 
num=((R ~·b )+(KA2)}: 
den=((J'L) ((J*R)+(L*b)) ((b"R)+IC2)}; 
nurncon=(Kv, Kp, K1}; 
dencon=(l 0}; 
nurnol=conv(nurn,numcon); 
denol=conv( den, dencon); 
{numcl, denclj =cloop( numol, denol); 
t = 0.:0.01:t; 
y=step(nu.mcl,dencl, t); 
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title('DC Motor Speed Closed-Loop Control (PID) (PID)') 
plot(t,y),grid 
xlabel('Time [sec}') 
ylabel('Motor Speed {rad/sec}'). 

4.10 Thning of PID Controllers 
Methods are available to develop a controller that will meet steady state 

and transient specifications for both tracking input references and reject-
ing disturbances. These methods require that control of the process use 
complete dynamic models in the form of equations of motion or transfer 
functions. Ziegler and Nichols gave two methods for tuning the controller 
for such a model. 

4.10.1 Quarter Decay Ratio Method 

FIGURE 4.26 
Quarter Decay Ratio 

y(t) 

Period 

t 

In the first method, the choice of controller parameters is based on a 
decay ratio of approximately 0.25. This means that a dominant transient 
decays to a quarter of its value after one period of oscillation as shown 
in Figure 4.26. A quarter decay corresponds to ~ = 0.21 and is a good 
compromise between quick response and adequate stability margins. A 
large number of process control systems exhibit a process reaction curve. 
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Type of Controller 

p 

PI 

PID 

Optimum Gain 

Kr = l/RL 

{ 
Kp = 0.9/RL 

Kr = 0.27/ RL2 

Kp = 1.2/RL 

Kr = 0.6/RL2 

KD=0.6/R 

Table 4.2 PID Controller Tuning: Quarter Decay Ratio 

30:3 

The slope of the curve is represented by R, and the intersection line with 
the time axis identifies the time delay L = td. The equations are simulated 
for the system on an analog computer and the control parameters adjusLecl 
until the transients showed a decay of 25% in one period. The regulator 
parameters suggested by Ziegler and Nichols for the common controller 
terms are shown in Table 4.2. It is important to note that the general 
expression for PID controller used is given by 

4.10.2 Stability Limit Method 

In the second method the criteria for adjusting the parameters are based 
on evaluating the system at the limit of stability rather than on taking a step 
response. The proportional gain is increased until continuous oscillations 
are observed, that is, until the system becomes marginally stable. The 

r 
+~[g-----JProcessJ y! 

~ !L__ _ ___J. 

FIGURE 4.27 
Determination of Ultimate Gain and Period 

corresponding gain Ku (also called the ultimate gain) and the period of 
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y(t) 

t 

FIGURE 4.28 
Marginally Stable System 

oscillation Tu (also called the ultimate period) are determined as shown in 
Figure 4.27. Figure 4.28 shows a marginally stable system, and Tu should 
be measured when the amplitude of oscillation is quite small. Then the 
final parameters are chosen as shown in Table 4 .3. 

Experience has shown that the controller setting according to Ziegler-
Nichols rules provide a good closed-loop response for many systems. The 
process operator can do the final tuning of the controller it.cratively to yield 
satisfactory control. 

4.11 Steady State Tracking and System Type 

System types can be defined with respect to a reference r(t) or a distur-
bance w(t). 

Consider the generic feedback system shown in Figure 4.29. Let the 
transfer function from the reference r(t) to the output y(t) be Tr(s), and 
the transfer function from the disturbance w(t) to the output y(t) be Tw(s). 

tk 
For a generic reference, r(t) = k!, it will be shown that the steady ;-;Late 

error with respect to the reference is given by 

r . (1- Tr) 
ess = hm k . 

s->0 S 

Similarly, for a generic disturbance, w(t) = ~~, it will be shown that the 
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Type of Controller 

p 

PI 

PID 

Optimum Gain 

Kp = 0.5Ku 

{ 
Kp = 0.45Ku 

KI = 0.54Ku/Tu 

Kp = 0.6Ku 

Table 4.3 PID Controller Tuning: Stability Method 

w(t)! 
_r_(t_) --+@--jD(s)j t@-jo(s)j y(t). 

r I~ I I 
FIGURE 4.29 
A General Control System 

steady state error with respect to the disturbance is given by 

w l' -Tw 
ess = liD -k-

s-->0 S 
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The system type can then be defined in terms of these steady state errors e~8 , 

and e~8 • The general transfer function with respect to the reference input, 
Tr ( s), is obtained from Figure 4.29 by setting the disturbance to zero, i.e., 
w(t) = 0. 

D(s)G(s) 
Tr(s) = 1 + f3D(s)G(s) · 

The general transfer function with respect to the disturbance, Tw(s), is 
obtained from Figure 4.29 by setting the reference input to zero, i.e., r(t) = 
0. Redrawing Figure 4.29 leads to the diagram in Figure 4.30, from which 
Tw(s) is easily obtained. 
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w(t) y(t) .. 

FIGURE 4.30 
Obtaining the Transfer Function w.r.t the Disturbance 

G(s) 
Tw(s) = 1 + (JD(s)G(s) · 

It is important to note that the same system characteristic equation is 
obtained from both Tr(s) and Tw(s), 

1 + (JD(s)G(s) = 0. 

This is because a system only has one characteristic equation, which por-
trays the system dynamics. 

The starting point in deriving the steady state error e~8 is considering 
the Laplace transform of the reference error, 

Er(s) = R(s)- Y(s) 

= R(s)(l- Tr) 

e~s = lim sEr(s) 
s->0 

=lim sR(s)(1- Tr) 
S->0 

= lim s(l - Tr) 
s->0 sk+l 

= lim ( 1 - Tr) . 
s->0 sk 

Final value theorem 

where R(s) = £ [~~] 1 
sk+l 

Similarly, the steady state error e~8 is derived by considering the Laplace 
transform of the error due to the disturbance (with no reference input). 
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Ew(s) = 0- Y(s) 

= -TwW(s) 

e;:'s =lim sEw(s) 
s->0 

=-lim sTw W(s) 
S->0 

l . -sTw = lm--
s->0 sk+l 

l . -Tw = Jm--. 
s->O sk 

Final value theorem 

[tk] 1 where W(s) = .C - = --k! sk+l 
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The system type is the degree ( k) of the polynomial ~~ that will make 

the steady state errors e~s and e~~s nonzero constants. Thus, there are two 
types of system types: one with respect to reference and the other with 
respect to the disturbance. 

Example 4.6 Consider the closed-loop contml system shown in the follow-
ing diagram. 

PID Contml System Problem 

(a) Use proportional control D(s) = Kp. Does this controller provide 
additional damping? 

(b) Use PD control, D(s) = Kp + Kvs. JJeteTmine the tJ·acking and 
distuTbance-Tejection pmperties for step inputs on 8r(t) and w(t). 

K 
(c) Use PI contml, D(s) = Kp+__!_. Discuss the effect of this contmller 

s 
on the stabilit.y of the system. 

KI 
(d) Use FID control, D(s) = Kp +- + Kns. Discuss the effect of this s 

contmller on the stability and steady state errors of the system. What are 
the two system types when the PID is employed? 
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Solution 4.6 The transfer function with respect to reference Tr(s) is ob-
tained from the block diagram by setting the disturbance to zero as follows: 

D(s) 
8(s) J s2 

Tr(s) = 8r(s) = 1 D(s) 
+ Js2 

D(s) 
D(s) + Js2 · 

The transfer function with respect to disturbance is obtained by setting the 
reference to zero, and then redrawing the diagram as shown in the following 
figure. 

w(t) +0--------[l}-· 1 
~ Js s - ~ 

8 (t) 

Obtaining the Transfer Function w. r. t. the Disturbance 

Tw(s) is then obtained as follows: 

1 
8(s) Js2 

Tw(s) = W(s) = D(s) 
1 + Js2 

1 
D(s) + Js2 · 

Thus, the general system characteristic equation for the system (it is the 
same from both T w ( s) and Tr ( s)) is given by 

D(s) + Js2 = 0. 

a) Proportional (P) controller 

D(s) = Kp. 

The specific characteristic equation becomes 

Js2 +Kp = 0 

± . [K; 
s= JV-y=* ~ = 0. 

This means that the proportional controller does not provide any damping. 
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b) Propor·tional and Derivative (P D) Controller 

D(s) = Kp + Kos. 

The transfer function with respect to reference is given by 

Tr = D(s) 
D(s) + Js 2 

[Kp +Kvs] 
Js 2 + [Kp + KDs] · 

For tracking properties 

=lim 8 ( J 2-k ) 

s-+o Js 2 + Kos + Kp . 
( 4.45) 

1 
For a step reference inp1Lt er(t) = 1, which means Gr(s) = - .g, k = 0. 

8 
Frmn Equation 4.45, 

k = 0 ~ e:s = }~p = 0. 

This means there is a zero steady state errDr for a Btep input. For distur-
bance r-ejection, the transfer function with respect to the disturbance is given 
by 

T - 1 
w- D(s) + Js 2 

1 

Js2 + [Kp + Kos] 
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The corresponding steady state erroT is given by 

w - l' -Tw 
ess - lffi k 

s--->0 S 

=lim 
s--->0 

1 

Js2 + [Kp + KDs] 
sk 

= l~6 (- Js2 + [;~k + KDs]) · ( 4.46) 

For a step distuTbance w(t) = 1, which means Dr(s) = ~ <;=} k = 0. From 
Equation 4.46 

k w 1 
= 0 ===? ess = Kp. 

This means there is always a. steady state eTTor due to a. step distuTbance. 
The erroT decreases as Kv is increased. 

c) Pmportiona.l and Integral (PI) controller, 

Kr 
D(s) = Kp+ -. 

s 

The characteristic equation takes the foTm 

Kr Kp+-
==?1+ s =0 Js2 

===? Js3 + Kps + Kr = 0. 

The coefficient of s 2 is missing, which means {Routh-HuTwitz stability cri-
terion) at least one pole is not in LHP, which implies that the PI is an 
unstable contml strategy for this system. 

d) Proportional and Integral and Derivative {P ID) controller 

Kr 
D(s) = Kp +- + KDs. 

s 

Th·is means that the characteristic equation of the system becomes 

1 Kr 
1 + 1 2 [Kp + - + KDs] = 0 s s 
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There is control outr all the poles and the system can be made stable by 
choosing KD, Kp, and K 1 such that all the poles arc stTictly in the LHP. 
The tmnsfer fundion wilh respect to the reference is given by 

D(s) 
Js2 

D(s) 
1 + Js2 

1 K1 
J 2 [Kp + - + KDs] 

s s 

'The steady state ermr with respect to reference is given by 

r 1. (1- Tr) 
css = l!Yl k s_,O S 

= lim -"--( 1_---,.T_r-'-) 
s->0 sO 

= lim(1- Tr) 
::;---tO 

= 0. 

1 
from r(t) = 1 <¢=? R(s) =- =? k = 0 

s 

Hence, there is no steady state error with respect to a step input, which 
means with P ID controller, the system can effectively track step inputs with 
no steady state errors. The transfer function with respect to lhc disturbance 
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is given by 

Y(s) G(s) 
Tw = W(s) = 1 + (JD(s)G(s) 

1 
Js2 

D(s) 
1 + Js2 

1 
Js2 

8 

The corresponding steady state erroT is given by 

w l" -Tw 
ess = lill -k-

s~o s 

. -Tw = lnn - 0-
s-->O 8 

1 
from w(t) = 1 {::? W(s) =- =* k = 0 

8 

=lim -Tw 
.s------+0 

=lim 
s-->0 

0 
= 

Kr 
= 0. 

s 

Hence, there is no steady state error with respect to a step disturbance, 
which means with P ID controller the system effectively rejects step distuT-
bances. In general, the system type with respect to the reference is the value 
of k such that 

r . (1 - Tr) 
e88 = lnn k 

S-->0 8 
Nonzero constant. 

For the specific unit feedback control system under discussion the expression 
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for e~8 can be simplified as follows: 

= lim 
s->0 
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(4.47) 

In order to obtain the system type try ·increasing values of k starting from 
0 in the expression in Equation 4.41 until a nonzero constant is obtained. 

k: 0 ===} 
/' 0 

=0 ess = -
KI 

k 1 e~s 
0 

=0 ===} = -
KI 

k 2 ===} e:s 0 
=0 = -

Kr 

k = 3 ====? e~, = 1~1 (a nonzem const.ant) 

====? system type with respect to reference is 3. 

This means with a PID controller this system can effectively track step, 
ramp, and parabolic inputs without any steady state errors. For cubic ·inputs 
there is a constant nonzero error and for higher-order inputs the systent 
becomes unstable, i.e., the system is not able to track these higheT-onler 
inputs because theTe is an infinitely growing reference error. 

In general, the system type with respect to the disturbance is the value of 
k such that 

w . -1'w -ess = hrn -k- = Nonzero Constant. 
s-+0 s 

For the specific unit feedback control system under discussion the expression 
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for e~, can be simplified as follows: 

w l' -7'w 
ess = llll -k-

8~0 s 
s 

=-lim Js3 + KDs 2 + Kps + K 1 
8--->0 sk 

( 
1-k ) l . s 

-- lm 
- 8--->0 Js 3 +KDs2 +Kps+KI. ( 4.48) 

In order to obtain the system type try increasing values of k starting frmn 
0 in the expression in Equation 4.48 1mtil a nonzero constant is obtained. 

k = 0 ===? ew = _ _Q_ = 0 
88 Kr 

1 
k = 1 ===? c~vs = - Kr ===? System type with respect to disturbance is 1. 

This means with a PID controller this system can effectively reject step 
distur·bances without any steady state erroTs. For mmp inputs there is a 
constant nonzero error and for higher-order inputs the system becomes un-
stable, i.e., the system is not able tu handle these highcT-IYrder disturbances 
because of infinitely yrowing errors. 

4.12 Sensitivity 

The sensitivity of a control system i:i concerned with how the controlled 
variable varies with respect to variations in system parameters. These 
parameters could be plant gains, controller gains or any other parameter 
on which the system depends. Although in the modeling carried out so far it 
has been assumed that these parameters are constant, in practical systems 
they could vary with changes in operating conditions such as temperature 
and pressure. 

4,12,1 Definition of Sensitivity 

Consider a system with a general (open- or closed-loop) transfer function 
H(s), which is dependent on a parameter K. Suppose that a change in 
operating conditions causes the parameter K to drift from its original value 
to K + 8K. This parameter variation in turn forces the transfer function 
to change from H(s) to H(s) + 8H(s). The sensitivity Sf{ of the transfer 



Characteristics of Feedback Control Systems 315 

function with respect to variation in the parameter K is defined as the ratio 
8H 8K 

of H to K such that 

!5H I!5K 
H K 

;::::; dH ldK 
H K 
KdH 
HdK. 

4.12.2 Open- and Closed-Loop Sensitivity 

Consider the general open and closed-loop transfer functions for a ::;ystem 
with a proportional c:outrol K and plant gain G(s) 

Hoz(s) KG(s) 

KG(s) 
Hci(s) = 1 + KG(s) 

( 4.49) 

( 4.50) 

The open-loop sensitivity SJ{01 with respect to parameter K (the gain) is 
obtained as follows: 

From Equatiou 4.49 

sJ{ol = dHoz I dK 
Hoz K 
K dHoz 

Hoz dK · 

d~;z = G(s). 

Hence, the sensitivity function i::; given by 

SH01 _ _.!!__ dHoz 
K - Haz dK 

This means that 

K 
= KG(s) G(s) 

=1. 

sJ{ol = !5Hoz I !5K = 1 
Hoz K 

!5Hoz 8K 
==} Haz = K' ( 4.51) 
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which means that a 5% error inK would yield a error in Hal(s), and 
hence, an error of 5% in the output (variable being controlled). Put dif-
ferently, the system sensitivity with respect to proportional controller gain 
changes is 100% for open-loop control systems. 

The closed-loop sensitivity Sj1cz with respect to parameter K (the gain) 
is obtained as follows: 

Sr~c1 = dHc~ /dK 
1~ Hc~ K 

K dHc~ 

Hcl dK. 

From Equation 4.50 

dHc~ d [ KG(s) ] 
dK = dK 1 + KG(s) 

[1 + KG(s)] C(s)- KG(s)G(s) 

[1 + KG(s)] 2 

G(s) 
[1 + KG(s)] 2 . 

Hence the closed-loop sensitiviLy function is given by 

sJ{cl = _!!___ dHc~ 
Hc~ dK 

This means that 

K G(s) 

[ KG(s) ] [1 + KG(s)f 
1 + KG(s) 

1 

1 + KG(s)' 

sHcl = 15Hcl I 15K = 1 
K Hc~ K 1 + KG(s) 

15Hc~ ( 1 ) 8K 
~ Hc~ = 1 +KG(s) K' 

Comparing this equation with open-loop sensitivity Equation 4.51, 1t 1s 
clear that the error in the controlled quantity is less sensitive to variations 
in the proportional controller gain K by a factor 

1 + KG(s). 
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This is a major advantage of closed-loop systems over open-loop control 
systems. The term 1 + KG(s) is called the return difference of the feedback 
path. 

Example 4. 7 A unity feedback control system has the following transfer 
function 

G(s)- K 
- s(s +a) 

a) Compute the sensitivity of the closed-loop transfer function to changes 
in the parameter K. 

b) Compute the sensitivity of the closed-loop transfer function to changes 
in the parameter a. 

c) If the unity gain in the feedback changes to a value f3 =f. 1, compute 
the sensitivity of the closed-loop transfer function with respect to /3. 
Solution 4. 7 a) The transfer function of the system is given by 

K 
H(s) _ G(s) s(s +a) 

- 1+G(s) = 1 + K 

K 
- s2 +as+K' 

From the general definition of sensitivity 

Sf{= dH /dK 
H K 

For the specific transfer function 

KdH 
= HdK' 

s(s +a) 

dH ( s2 + as + K) - K 
dK ( s2 + as + K)2 

s2 +as 
= (s2 +as+K)2 ' 

Hence, the sensitivity function is given by 

SH _ KdH 
K- HdK 

K ( s2 + as + K) s2 + as = X ..,.--;:,.-----~7 
K (s2 +as+K)2 

s2 +as 
s2 +as+ K' 
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b) Fro-rn the general defini lion of sensitivity 

For the specific transfer function 

a dH 
H da · 

dH -sK 
da (s2 +as+ K) 2 · 

Hence, the sensitivity function is given by 

a(s2 +as+ K) -sK = X -:-::-----,. 
K (s2 +as+K)2 

-as 
(s2 +as+ K) · 

c) The transfer function of the system is given by 

G(s) 
H(s) = 1 + (3G(s) · 

Fmm the general definition of sensitivity 

SH = dHjd(3 
a H (3 

For the specific transfer function 

(3dH 
H d(3. 

dH -G2 (s) 
d(3 [1+(3G(s)J2' 
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Hence the sensitivity function ·is given by 

sn - f!_ dH 
!1 - H d/3 

,3(1 + ;30) -02 

(J (1 + (30) 2 

-(30 
1 + (30 

-(JK 

-(JK 
s(s +a) 

1 + ,GK 
s(s +a) 

s(s+a)+(JK. 

319 

Example 4.8 Consider the car's cruise control problem discussed in pre-
vious sections. The open-loop and closed-loop transfer functions were found 
to be 

bK 
lioz(s) = KO(s) = --1 1/L8 +) 

KO(s) 
Hc~(s) = 1 + KO(s) 

bK 
ms+b 

bK 
1+--

ms+b 

(4.52) 

bK 
(4.53) ms+b+bK. 

Compare lhc sensitivity of the open-loop and closed-loop systems with 7·e-
spect to the contmller gain K. 

Solution 4.8 Consider the open-loop and closed-loop transfer functions for 
the car-'s cruise contml system. The open-loop sensitivity SJf with 
to parameter K (the gain) is obtained as follows: 

From Equation 4.52 

S~ol = dHoz /dK 
Hot K 

K dUat 
Hal dK. 

dHal b 
dK ms+b. 
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Hence the sensitivity function is given by 

This means that 

sHol- K dHal 
K -Hal dK 

]( b 

c~~b) ms + b 

=1. 

S Hnl _ 8Hal I 15K _ 
K - -1 

Hal K 
15Hol 15K 

===? Hal = K' 

which means that a 5% error in K would yield a 5% error in Hal ( s). This 
in tuTn means that an error of 5% in the controller gain K causes an error 
of 5% in the car speed (the variable or output being controlled). 

The closed-loop sensitivity sJ:·' with Tespect to parameter K (the gain) 
is obtained as follows: 

From Equation 4. 53 

sf:cl = dHct I dK 
Hct K 

K dHc~ ---
Hcl dK 

dHc~ = _!}__ ( ~ ) 
dK dK 1 +~ 

Tr!S + !J 

( bK ) ( b ) bK ( b ) 
1+~ ~ -~~~ 

( bK ) 2 
1+---

ms+b 

(ms + b + bK)b ~. bKb 
(ms + b + IJ!\)2 

b(ms +b) 
(ms + b + bK) 2 · 
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Hence, the closed-loop sensitivity function is given by 

sfi cl = !i_ dH cl 
He~ dK 

This means that 

K b(ms+b) 
~--~------~ X ~~----~~ 

( bK ) (ms + b + bK)2 
ms+b+bK 

ms+b 
ms+b+bK 

1 
bK 

1+--
ms+b 

8Hcl I 8K = __ 1~-
Hcl K bK 1+--

ms+b 

( \K ) 8:. 
1+--

ms+b 
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Hence, compared with the open-loop system, the error in the controlled quan-
tity is less sensitive to variations in the plant gain K by a factor 

bK 
1 + --b = 1 +KG(s). 

ms+ 
If there is an erroT of 5% in the contmller gain K the error in the caT speed 
will be 

5% 
bK 

1+--
ms+b 

Thus the percentage eTror will be far less than 5%, hence this example il-
lustmtes a key advantage of closed-loop systems over open-loop systems. 

4.13 Stability 
For a given control system, stability is usually the most important prop-

erty to be determined. A stable system always gives responses appropriate 
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to the stimulus. For linear time-invariant systems there are three ways of 
understanding and quantifying stability. 

• Bounded Input Bounded Output (BIBO) stability. 

• Asymptotic internal stability. 

• Routh-Hurwitz stability. 

4.13.1 Bounded Input-Bounded Output Stability 

A system is said to be bounded input-bounded output stable, if every 
bounded input produces a bounded output. Consider a general system 
with an input r(t), output y(t), and impulse response li(t). By using con-
volution 

y(t) =I: h(T)r(t- T)dT. 

If the input r(t) is bounded it means there exists a constant M such that 

It follows that 

lr(t)l :S M < oo. 

IYI =I I: h(T)r(t- T)dTi 

:S I: ih(T)iir(t- T)idT 

:::; M I: ih(T)idT. 

Therefore,the output is bounded if and only if 

is bounded. Hence a system is said to be BIBO stable if and only if its 
impulse response h(t) is such that 



Characteristics of Feedback Control Systems 

4.13.2 Asymptotic Internal Stability 

A general system transfer function is given by 

H( ) = Y(s) 
s U(s) 

bosm + b1sm-l + b2sm-2 + ... + bm 
aosn + alsn- 1 + a2sn- 2 + ... + !Ln 

= KIIj= 1(s- Zj). 

IIf=1 (s- Pi) 
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( 4.54) 

( 4.55) 

The solution to the input-output (homogeneous) differential equation that 
corresponds to the characteristic equation from the transfer function rep-
resented in Equation 4.54 is given by 

n 

y(t) = LKiePit, 
i=1 

where {pi} are the roots of the characteristic equation and Ki depends on 
initial conditions. The system is stable if and only if ePit decays to zero for 
all poles {pi} as t is increased to oo, i.e., 

ePi t __, 0 as t ---+ oo for all {pi}. 

This will happen if and only if all the poles {pi} are strictly in the LHP, 
that is, 

Re{pi} < 0. 

This is the asymptotic ·internal stability criterion and can be determined by 
computing location of the roots of the characteristic equation and checking 
whether the rca l parts of the roots are strictly less than zero. 

4.13.3 Routh-Hurwitz Stability Criterion 

It is not always easy to explicitly determine the roots of high-order poly-
nomial functions (characteristic equations). The Routh-Hurwitz stability 
criterion allows the determination of stability without solving for the roots 
of the characteristic equation. This is achieved by analyzing the coeffi-
cients of the characteristic equation, and expressions derived from these 
coefficients. Consider the general characteristic equation 

aosn-!- a1sn- 1 + rLzSn- 2 + ... + !Ln = 0. 

From the definition of asymptotic stability, all roots of the characteristic 
equation must have negative real parts, which implies that a necessary but 
not sufficient condition for stability is that all the coefFicients { ai} must be 
present and positive. 
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4.13.3.1 Summary of the Routh-Hurwitz Stability Procedure 

• Inspect the characteristic equation, if any coefficient is missing (zero) 
or negative, then the system is unstable. 

e If all the coefficients are present, then construct a triangular array 
that is a function of the coefficients { ai}. 

• For stability, all the elements in the first column of the array must be 
positive. This is the necessary and sufficient condition for stability. 

4.13.3.2 The Array 

Arrange the coefficients of the characteristic equation in two rows begin-
ning with the first and second coefficients and followed by even-numbered 
and odd-numbered coefficients. Subsequent rows are then added. Routh-
Hurwitz array 

sn 1 a2 a4 ... 

8n-l 
a1 a3 a5 ... 

bl b2 b3 .. 

sn-3 C1 c2 C3 

., 
s~ * * 
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The terms are computed as follows: 

bl 

- det [ 1 az] 
a1 a3 a1az-a3 

a1 a1 

d [ 1 a4] - et 

b2 = 
a1 as a1a4- a5 

a1 a1 

_ det [ a1 as] 
bl b2 b1a3- a1b2 

C] = 
bl bl 

- dct [ ~: ~;] b1a5- a1bs 
c2 = 

bl bl 

If at least one clement of the first column is not positive, this means that 
there are smne roots in the RHP, which in turn means that the system 
is unstable. The number of roots in the RHP is equal to the number of 
sign changes. For example, if the first column consists of the following five 
elements: 

2, - 1, 7, 0.5, 13 ==? 2 sign changes ==? 2 roots in the RHP. 

4.13.3.3 A Special Case: First Term in a Row is Zero 

If the first term in one of the rows is zero replace the zero with e and 
proceed with the Routh-Hurwitz stability procedure, and then apply the 
stability criterion as e ~ 0. 

Example 4.9 Consider the process plant contTol syslern shown below. 

r(t)+ 
~ 1 y{t) 

:E 
s(~ +s+ l)(s+2) -

A Procrcss Plant Control Sy8l.crn 

Find the range of K that will make the 8Y8tem stable. 
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Solution 4.9 The closed-loop transfer function is obtained as follows: 

KG(s) 
T(s) = --G() 1 +K s 

K 
s(s2+s+1)(s+2) 

K 
1 + --:-. -c. ---,---:-----,-

s(s2+s+1)(s+2) 

K 
s(s2 + s + 1)(s + 2) + K 

K 

Therefore, the characteristic equation is given by 

Using the Rmdh-Hurwitz procedure, an array of coefficients can be con-
structed. 

s4 l 3 K 

s3 3 2 0 

82 
7 K -
3 

.sl 
9K 

2--
7 

so K 

For stability, K must be posit.ive. and all coefficients in the first colurnn 
must be Therefore, 

( 9K) K > 0 and 2 - T > 0 

F 14 
===? 0 < \ < g· 

14 
This is the mnge of K thai will permit system stability. When K 

9' 
lhe system becomes oscillatory with a constant amplitude. This is called 
marginal stability or indeterminate stability. 
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Example 4.10 Consider the closed-loop control system shown below. 

w(t)! 
0 r(t) t~ K,-+K,sl t~ 10 r s ~ s(s+I)+20 

Closed Loop Control System 

(a) Determine the transfer function from r toy. 
(b) Determine the transfer function from w to y. 
(c) Find the range of(KI,K2) for which the system is stable. 
(d) What is the system type with respect to r and w '? 

Solution 4.10 The solution is outlined below. 
a) 

T s = Y(s) = lO(KI + K 2s) 
r( ) R(s) s[s(s + 1) + 20] + lO(KI + K2s)' 

b) 

T s = Y ( s) = lOs 
w( ) W(s) s[s(s + 1) + 20] + lO(KI + K2s)' 

c) The characteristic equation is given by 

s3 + s2 + (10K2 + 20)s +lOKI = 0. 

Routh-Hurwitz array 
s3 1 10K2 + 20 

1 

For stability 

lOKI > 0 =;. KI > 0 

lOK2 + 20 - lOKI > 0 =;. K2 > KI - 2. 

y(t) 
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Therefore, the conditions .for stability are given by 

d) System type 
(i) The expression of the steady stat.e error with respect to reference can 

be simplified as follows: 

r . (1-Tr) 
e,s = hm I: 

s-+0 S' 

= lim s[s(s + 1) + 20] + 10(K1 + K 2 s) r( s[s(s+1)+20] )] 

s-+0 sk 

= hm . 
. [ s1-k[s(s+1)+20] ] 

s-->0 s[s(s + 1) + 20] + lO(Kl + K2s) 
( 4.56) 

In order to obtain the system type Lry increasing values of k starting fmm 
0 in the expression in Equation 4. 56 until a nonzero constant is obtained. 

k 
0 

=--oc~O 
lOK1 

2 

Kr 
(a nonzeTO constant) 

--? System type with respect to reference is 1. 

(ii) The expression of the steady state error with respect to disturbance can 
be s·implified as follows: 

e~~ =lim -k-
s-->0 S 

_ ( . lOs . ~ 
= lim \ s[s(s + 1) + 20] + 10(K1 + K 2s); 

s-->0 sk 

-10s1-k 
=lim . . . 

s->O s[s(s + 1) + 20] + 10(K1 + K2s) 
( 4.57) 
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In order to obtain the system type try increasing values of k starting from 
0 in the expression in Equation 4. 57 until a nonzcT"O constant is obtained. 

k 
0 

= --- =0 
lOK1 

w 10 1 ( ) k = 1 ==? ess = - 10!(1 =-KI a nonzem constant 

==? System type with respect to disturbance is 1. 

Example 4.11 The following figure shows the speed control of an assembly 
plant. 

r(t) +~IJ<l ... ~ 1 
~~· -~ -,.-(s-+-=-=1 )__,.(s_+_p) 

speed 

Speed Control of an Assembly Plant 

y(t) 

actual 
speed 

Determine and plot the range of K and p that permits stable operation. 

Solution 4.11 The transfer function for the system is given by 

K 
T(s)= s3 +(p+l)s2 +ps+f\. 

Stability condition is established by us·ing the following Routh-Hurwitz array 
s 3 1 p 

From this array the conditions for stability are established as follows: 

K > 0 

(1 + p) > 0 ==? p > -1 but p > 0 (coefficient of s) 

==?p>O 

p2 + p- J( 
b = > () 

l+p 

=} J( < (p2 + p) 

==? 0 < K < (p2 + p) and p > 0 
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The curve of K us. p where 

K =p2 +p, 

is then plotted in Figure 4. 31. For the system to be stable, the desired region 
is the shaded area, as illustrated in Figure 4.31 

K 

Region that allows stability 

FIGURE 4.31 
Stability Region for Assembly Plant 

Example 4.12 The feedback control system of a chemical plant is given 
below. How many of the system's poles are not in the LHP? 

r(t) 

+~-L'-----·······-···--·14.5l_-~l_~2 ~~Y~(t). L ~ ~4J-2S'+68'+6s . 

Chemical Plant Control System 
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Solution 4.12 The system tmnsfer function is given by 

T = KG(s) 
1 + KG(s) 

4'5 ( s5 + :3s4 + 2~3 + 6s2 + 6s) 

1 + 4'5 ( s 5 + 3s4 + 2~3 + 6s2 + 6s) 

9 
s5 + 3s4 + 2s3 + 6s2 + Gs + 9 · 

The next step is constructing the Routh-Ilurwitz array. 

8'5 1 2 6 

s4 3 6 9 

s3 e 3 0 

82 
oc 9 

0 0 
c 

sl 
E2 

3---
2e- 3 

0 0 

3 0 
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The 0 thai is the first element of the s3 row is Teplaced by e. The stability 
criterion is applied by taking the limit as E _, 0. There are two sign changes 
in the first column of the array (from 0 to -oo and then from -oo to 3) 
wh·ich means that there are two poles which are not in the LIIP. 
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4.14 Problems 
Problem 4.1 Consider the following generic feedback control system. 

w(t)! 
_r_(t_) _+@--jD(s)j :-@---jG(s)l y(t). 

r 1 13 1 I 
A GeneTal Control System 

(a) Find the transfer function from the Teference r(t) to the output y(t) 
i.e. Tr(s). 

(b) Find the tmnsfeT function from the disturbance w(t) to the output 
y(t) i.e. Tw(s). 

tk 
(c) FaT a generic reference, r ( t) = k! , show that the steady state error 

with respect to the refeTence is given by 

r _ 1. (1 - Tr) 
eBB- lffi k . 

B->0 S 

tk 
(d) For a generic disturbance, w(t) = k!, show that the steady state eTror 

with Tespect to the disturbance is given by 

w l" -Tw 
eBB= lffi -k-. 

B->0 S 

(e) Explain the meaning of system type in terms of the steady state errors e~8 , 

and e~8 • 

Problem 4.2 In the diagram for Problem 4.1, a PID controller is used in 
a unit feedback system such that 

Kr 
D(s) = Kp +- + KDs s 

1 
G(s) = Js2 

r(t) = 1 

w(t) = 1. 
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(a) What is the effect of the P ID on the stability of this specific systern? 
(b) Find the steady state errors , e~8 for the system. 
(c) What are the system types with respect to the reference and distur-

bance, respectively? 

Problem 4.3 Design Project: 
The closed-loop control system of the DC motor can be derived and shown 

to be given by Pigure 4. 32. The terms S1( s), 0,. ( s) are the Laplace trans-
forms of the actual angular speed w( t) and the desir-ed angular speed w,. ( t), 
respectively. E(s) and U(s) are the Laplace transforms of the error and the 
control signals. 

Or(s) +0 E(s)_[ D(s) [ U(s) Rb+K2 Q(s) 
. . (JL)s 2 +(Lb+RJ)s+Rb+K2 I 

-r'---------------'1 
FIGURE 4.32 
Closed-Loop Motor Speed Control (PID) 

The cont·roller D( s) can take the form of any one of the four controlleTS P, 
PI, P D, and PI D. A PI D controllcT contains all three control components 
(proportional, derivative, and integral) and hence, its transfer fnnction can 
be represented as follows 

K 
D(s) "= Kp + - 1 + Kn,s 

s 
Kns 2 + Kps + Kr 

s 

Thns, the corresponding block diagram representation takes the form shown 
in Figure 4. 33. This is the generic PI D controller, and the other controllers 
P, PI, P D can be modeled in a similaT fashion. 

E(s) 
D(s) U(s) .. E(s) 

FIGURE 4.33 
A PID Controller: Block Diagram Form 

(a) Characteristics of P ID Controllers 

I<ns 2.t-KpS+ K I 
s 

U(s) 

By employing ]i,fATLAB, implenu·nt fonr closed-Loop control systems for 
the DC motor by using the four controllers (P, PI, P D, and PI D) and 
the data provided. The objective is to satisfy the given design reqnirements. 
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From the results discuss the benefits and drawbacks of the controller com-
ponents; Pmporl.ional (P), Integral (1), and Derivative (D). Also show and 
explain how the three components compensate for each other's drawbacks. 

(b) Tuning of PID Controllers: 
From the MATLAB implementation explain how you choose the gains 

(Kp, Kr Kn) for the controllers (P, PI, PD and PID)? 
DATA 
Assume the following values for the physical parameters, which were de-

rived by experiment from an actual motor: 
Moment of inertia of the rotor J = 0.012kg.m2 

Damping ratio of the mechanical system b = 0.105Nms 
Electromotive force constant K = O.OlNm/Amp 
Electric resistance R = lfl 
Electric inductance L O.G05H 

DESIGN R£QUIREMENTS: 
Desired angular speed wr(t) = lrad/ sec 
Settling time t 8 = lsec, 
Overshoot l\1P ~ 20%, 
Steady slate error e88 (t) ~ 

Problem 4.4 Consider the control system shown in the following diagmm. 

_r_(t)_~®----1 D(s) 
I 

1 y(t) . 
s(s+ 1) 

A Control System 

The controller D(s) is given by, 

() , s+a Ds=l\. 2 2 . 
s +w 

(a) Prove that the system is capable of tracking a sinusoidal reference 
input, r(t) = sin(wt), with a zero steady state error. 

(b) Find the range of K and a such that the closed-loop system remains 
stable. For the case where n = L is the closed-loop system asymplotically 
stable for some set of values of K? 

Problem 4.5 Consider the helicopter altitude control problem shown in 
the following diagram, 
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w 1 + 

o Br ·I!J--!~ID(sJI '®-1 ~s I ·[f--r-8-o 
l l!J-· _ ________, 

where 

Helicopter Altitude Control Problem 

J = helicopter inertia, 
Br(t) =reference helicopter attitude, 
B(t) =actual helicopter attitude, 
Ks = sensor gain, 
Kr =reference scaling gain, 

w(t) = disturbance torque. 

(a) Use proportional control D(s) = Kp. Does this controller provide ad-
ditional damping>? 

(b) Use PD control, D(s) = Kp + Kns. Determine the tracking and 
disturbance-rejection pmperties (i.e., find and e;::s) for step inputs on 
Br(t) and w(t). 

J( 
(c) Use PI control, D( s) = f( p + - 1 . Discuss the effect of this controller 

s 
on the stability of the system. 

K 
{d) Use PID control, D(s) = Kp + __!_ + KDs. Discuss the effect of this 

controller on the stability and steady st'~te errors of the system. 
(e) What are the two system types (one with n~spect to the reference 

and the other with respect to the disturbance) when the PID controller is 
employed? 

Problem 4.6 A DC motor speed control is described by the differential 
equation 

y + 60y = 600va - 1500w, 

where y( t) is the motor speed, Va ( t) is the armature voltage, and w ( t) is the 
load torque. Assume the armature voltage is computed using the PI control 
law 

Kp [r(t)- y(t)] + K 1 lt [r(t)- y(t)] dt, 
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where r(t) is the reference motor speed. 
(a) Deri'ue a block diagram representation of the system. 
(b) (i) Compute the transfer function from r(t) to y(t) when w(t) = 0. 

(ii) What is the steady state error due to a ramp reference motor 
speed, r( t) = t? 

(iii) Deduce the system type with respect to the reference input r(t). 
(c) (i) Compute the transfer fu,nction from w(t) to y(l.) when r(t) = 0. 

(ii) What is the steady state error due to a distw·bance input of the 
form w(t) = t ? 

(iii) Deduce the system type with respect to the disturbance w(t). 
(d) For the transfer function in (b) (i), compute the values for Kp and 

Kr so that the characte'ristic equation of the closed-loop system will have 
roots at -60 ± 60j. 

(e) Using the computed values of Kp and Kr, der'ive the system natuml 
response d·ue to the transfer function from w(t) and y(t). 

(f) Verify the solut'ions to parts b (i'i), c (ii), and (e) using MATLAB. 

Problem 4. 7 Consider the following unit feedback control system. 

o-r _ __,;; ... ® L ---· 
K{as+b} y 
s(s+ 1) 

Control System Problem 

(a) Disc11ss the effect of different values of (a, b, K) on the shape of the 
step response of the system. 

(b) Determine the system type with respect to r( t). 

Problem 4.8 Cons'ider the following control system where the feedback 
gain {3 is subject to var"iations. 

10 r +ff\ ~-~() 
a--------~~- (s+l)(s+lO) 

-1 []]--------' 
Control System with Variations in {3 

y ~ 
-u 

The objective is to design a controller for this system so that the output 
y(t) accv.mtely tracks the reference input r(t). 

(a) Let /3 = 1, and the following three options for the controller Di ( s) 
are available: 
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where K is a constant. Choose the contmller (including a particular value 
for K) that will Tesult in a type 1 system with a steady state eTmr of less 
than 110 • 

(b) Next, suppose that, due to haTsh conditions, there is some attenuation 
in the feedback path that is best modeled by (3 = 0.9. Find lhe steady state 
error due to a mmp input for Llu choice of Di(s) in part (a). 

(c) If ,3 = 0. 9, what is the system type for part (b) ? 

Problem 4.9 A control system has the structure shown in the following 
diagram. 

.L ·@I]-_!®- K Y(s) 

I 

s+ 1 - r s(s+2) 

Control System 

Determine ihe gain at which Lhe system wilt become unstable. ( Ans: 
0 < K < 1 

Problem 4.10 Designers have developed a srnall, fast, vertical-takeoff fighter 
airaaft that is invisible to radar (stealth aircraft). This aircmjt concept uses 
quickly turning jet nozzles to steer the airplane. The control system for the 
heading or direction contml is sho·wn in Lhe following diagram. 

Controller Aircraft dynamics 

:E K 
(s+20) Y(s) 

I s(s+lOi He ading 

Vertical- Takeoff Aircraft 

Determine the maximum gain of the system for stable operation. 

Problem 4.11 A system is Tepresented by equation x =Ax where 

A 
.ii == [ 

0 1 0 l 
~1 ~c ~2 

Find the range of c where the system is stable. 
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Problem 4.12 Utilizing Routh-Hurwitz criterion, determine the stability 
of the following polynomials: 

(a) s2 + 5s + 2 
(b) s4 + s3 + 3s2 + 2s + K 
(c) s5 + s4 + 2s3 + s + 5 
(d) s5 + s4 + 2s3 + s 2 + s + K 

Problem 4.13 Arc welding is one of the most irnpoT'tant areas of applica-
tion for indnstTial robots. In most manufacturing welding sitnations, WI cer-
tainties in dimensions of the part, geometry of the joint, and the welding 
process itself TequiTe the use of sensors for maintaining the weld quality. 
Se·ueTcLl systems use a vision system to measure the geometTy of the vuddle 
of melted metal as shown in the following diagram, whe-re the system uses 
a constant rate of feeding the wire to be melted. 

Desired + ~ J:-!TOr _ 
diameter~ 

Error :E 

Wire-melting 
Controller Arc process 

K current 1 --
s+2 (0.5s+l)(s+l) 

Vision system 
1 

0.005s+l 

A·rc Welding Control System 

Puddle 
diameter 

(a) Calculate the nu1:rimum value of K for the system. that will result in 
a stable system. 

(b) For 1/2 of the maximum value found ·in part (a), deteTmine the roots 
of the characteristic equation. 

(c) Estimate the overshoot of the system of part (b) when it is subjected 
to a step input. 

Problem 4.14 A feedback control system is shown in the following dia-
gram. 

R(s) Y(s) 

'---------!1 H(s) 1-
Feedback Control System 
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The pmcess transfer function is 

G(s) = K(s + 40), 
s(s + 10) 

and the feedback transfer function is H(s) = 1/(s + 20). 
(a) DeleTmine the limiting value of gain K for a stable system. 
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(b) FoT the gain that resv.lts in ·marginal stabildy, determine the magni-
tude of the imaginary roots. 

(c) Reduce the gain to 1/2 of the magnitude of the marginal value and 
determine the relative stability of the system (1) by shifting the axis and 
us·ing the Routh-H11.Twitz criterion and (2) by determining the mot locations. 
Show that the mots are between -1 and -2. 

Problem 4.15 A unity feedback control system is shown in the follow·ing 
diagram. 

Unity Feedback Control Sysl.em 

Determine the relative stability of the system with the following transfer 
function by locating the complex roots in the s-plane. 

(a) . 

(b) 

(c) 

~ 65 + 33s 
(,.(s) = s2 (s + 9) 

24 G ( s) = --,--,,----:-:,---.,...,----,-
s(s:> + 10s2 + 35s +50) 

G(s) = 3(s + 4)(s + 8) 
s(s + 5) 2 

Problem 4.16 On July 16, 1993, the elevator in Yokohama's 70-story 
Landmark ToweT, operating at a peak speed of 45 km/hr {28 mph), was 
inaugurated as /.he fastest super-fast elevator. To Teach such a speed without 
leaving passengers' stomachs on the ground flo err, the lift accelemtes f oT 
longer periods, rather than more precipitously. Going up it reaches full 
speed only at the 27th floor; it begins to decelerate 15 floor-s later. The 
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result is a peak acceleration similar to that of other skyscraper elevators-a 
bit less than a tenth of the force of gravity. 

Admirable ingenuity has gone into making this safe and comfortable. Spe-
cial ceramic brakes had to be developed; ·imn ones would melt. Computer-
controlled systems damp out vibrations. The lift has been streamlined to 
reduce wind noise as it hurtles up and down. One proposed system for the 
elevator's vertical position is shown in the following diagram. 

R(s) +~ _ 
~0----

Desired _ 
vertical 
position I 

Controller Elevator dynam1cs 

(K+l) 
1 

s(s 2+3s+3) 

Elevator Vertical Position Control 

Determine the range of K joT a stable system. 

Y(s) 

Ve rtical 
sition po 

Problem 4.17 Consider the case of a navy pilot landing an aircraft on 
an carrier. The pilot has three basic tasks, the first of which is 
to t.he aircraft's approach to the ship along the extended centerline 
of !.he nLnway. The second task is maintaining tht: aircraft on the correct 
glideslope, the third task is that of maintaining the coTrect spec:d. A model 
of lateral position control system is shown in the following 

-------- ------------1 r-------------
1 1 I 1 

1 Pilot : Aircraft ; 
I I I I I Ailerions and I I 

Controller I aircraft I 
I I I 

K(s+O.S) I 1 I Y(s) I I :E I s I (s-l)(s 2+ 10s+41 I Later 
: R(s) +®--
: Center a! 
: line - on I I 

I I 
I 
I 
I 
I 
I 

_____________ _. 

Lateral Position Control System 

Determine the range of stability forK 2': 0. 

positi 

Problem 4.18 A chem.ical control system is shown in the following dia-
gram. It is des·ired that the system be stable and the steady st.ate error for 
a v.nit step input be less than or equal to 0.05 (5%). 
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R( s) + R\________ ------<>-0----
s+a Y(s) 

s 3+(1-ta)s 2+(a-l)s+(l- a) 
-r 
~------------------------------~ 

A Chemical Control System 

(a) Determine the range of a that satisfies the ermr requirement. 
(b) Determine the range of a that satisfies the stability required. 
(c) Select an a that meets both requirements. 
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Problem 4.19 The control of the spark ignition of an automotive engine 
requ·ires constant peTjormance over a wide range of parameters. The control 
system is shown ·in the following diagram, where a controller gain K is to 
be selected. 

R(s) 

Spark Ignition Control System 

The paran1.cter- p is equal to 2 for many autos but can equal zero for those 
with high performance. Select a gain K that will result ·in a stable system 
for both values of p. 

Problem 4.20 An automatically g?tided vehicle on Mars is represented by 
the following figure. 

R(s) +®---I 10 I ~Y(s) 
Steering_ Ll 1 S+iO . S2 Direction 

command oftravel 

'----------~~-
Mars Vehicle Control Sys/.em 

The system has a steerable wheel in both the fmnt and back of the vehicle, 
and the design requires that H ( s) = K s + 1. Determine 

(a) the value of K required for stability, 
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(b) the value of K when one root of the characteristic equation is equal 
to s = -5, 

(c) the value of the two remaining roots for the gain in part (b). 
(d) Find the response of the system to a step command for the gain 

selected in part (b). 

Problem 4.21 A traffic control signal is designed to control the distance 
between vehicles as shown in the following diagram 

Throttle, engine, 
Controller and automobile 

K 1 Y(s) 
L --R(s) +f"?\_~-

Desired ~ f distance -
s s2+ 10s+20 Actual 

Sensor dis tan 

A Traffic Control Signal Control 

(a) Determine the range of gain K for which the system is stable. 
(b) If Km is the maximum value of K so that the characteristic roots are 

on the jw-axis, then K = Km/N where 6 < N < 7. We desire that the 
peak time be less than 2 seconds and the percentage overshoot be less than 
18%. Determine an appropriate value of N. 

Problem 4.22 Consider a unity-feedback control system whose open-loop 
transfer function is 

G(s) - -:-::-K---== 
-s(Js+B) 

Discuss the effects that varying the values of K and B has on the steady 
state error in unit-ramp response. Sketch typical unit-ramp response curves 
for a small value, medium value, and large value of K. 

Problem 4.23 The following diagram shows three systems: System I is a 
positional servo system. System II is a positional servo system with P D 
control. System III is a positional servo system with velocity feedback. 

ce 
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R(') 'T'----~ _5 __ 1-_·_1 ~s-(-=-5-s+~l)~:_-:1 Y-'-(s~). 
System I 

Y(s) 

System II 

R(s) 
---'--'---+-1 I 

Y(s) 

System III 

ThTee Contml Systems 

CompaTe the unit-step, unit-impulse, and unit-mmp responses of the thTee 
systems. VVhich systeTn ·is best with respect to speed of response and maxi-
mum o·uershoot in the step response? 

Problem 4.24 Consider the position control syste·rn. shown in the following 
fig·u·re. 

Control System: Multiple Loop Control 

Write a MATLAB progmm to obtain a unit-step response and a unit-
mmp Tesponse of the system. Plot C1LTves x1 (t) vs. t, x2 (t) vs. t, and e(t) 
vs. t (where e( t) = T( t) - x 1 ( t )} joT both unit-step and Wl.il.-mmp response. 

Problem 4.25 Determine the mnge of K joT stability of a unity-feedback 
control system whose open-loop tmnsfer function is 

K 
G ( s) = ---,s (,--s -+--:1 )--,-( s-+---,-2) 
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Problem 4.26 Consider the unity-feedback control system with the follow-
ing open-loop transfer function: 

G(s)- 10 
- s(s- 1)(2s + 3) 

Is this system stable? 

Problem 4.27 Consider the system 

x=Ax 

where A is given by 

[ 
0 1 0 l A= -b3 0 1 
0 -b2 -bl 

(A is called the Schwar-z matn::r.) Show that the fir-st column of the Routh's 
ar-my of the characteristic equation lsi- AI = 0 consists of 1, b1 , b2 , and 
blb3. 

Problem 4.28 Without using the Routh-Hur-witz criterion, determine if 
the following systems are asymptoi'ically stable, marginally stable, or unsta-
ble. In each case, the closed-loop transfer .function is given. 

(a) 

{b) 

(c) 

{d) 

M 8 = 10(s + 2) 
( ) s3 + 3s2 + 5s 

K M(s) = .....,3,----
s + 5s + 5 

100 
]\If ( s) = -s3::----2-s72_+_3s_+_1_0 

s-1 
M(s) = (s + 5)(s2 + 2) 

Problem 4.29 Using the Routh-Hurwitz criteT"ion, deterrn.ine the stability 
of the closed-loop system that has the following characteristic equations. 
Determine the nurnber of roots of each equation that are in the right half 
s-plane and on the jw-axis. 

(a) s3 + 25s2 + lOs + 450 = 0 
{b) s3 + 25s2 + lOs + 50 = 0 
(c) s3 + 25s2 + 250s + 10 = 0 
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Problem 4.30 Given the system in state equation form, 

dx(t) 
~ = Ax(t) + Bu(t) 

where 

[ 
1 0 0 l (a) A= 0 <5 0 
0 0 -2 

[1 0 0] (b) A= 0 -2 0 
0 0 3 

Problem 4.31 Robot control: Let us consider the control of a robot arm. 
It is pre1hcted that there w'ill be about 1 DO, DOD robots in service thTough-
out the world by 2000. The robot is a six-legged micro robot system 
highly flexible legs with high gain controllers that may become unstable and 
oscillate. Under this condition the characteristic polynomial is given by 

Problem 4.32 Welding Contml: Large welding mbots are used in today 's 
auto plants. The welding head ·is moued to different positions on the av.to 
body, and rapid, accurate response is requ·ired. A block diagram of a welding 
head positioning system is shown in the following diagram. 

R(s) +~~ 
~~~-~ 

Desired -
position I 

Controller Head dynamics 
K(s+a) 1 
(s+ 1) s(s+2)(s+3) 

Welding Robot Control System 

Y(s) 

Dat ahead 
sition po 

It is d~Csired to determine the ranqe of K and a for which the system is 
stable. The characteristic equation is 

K(s +a) 
l+C(s)=l+ s(s+l)(s+2)(s+3) =O 
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Chapter 5 

Root Locus Design Methods 

5.1 Introduction 
This chapter introduces and discusses the notion of root locus design, ex-

plains the procedure of creating root loci and outlines their uses. Definitions 
of the necessary terms are provided including a step-by-step guide to con-
structing a root locus, and details of how to design and evaluate controllers 
using the root locus method. Given a feedback control system, the root 
locus illustrates how the poles of the closed-loop vary with system 
parameters, in particular the closed-loop gain. It ic; a method that shows 
how changes in the system's feedback characteristics and other parameters 
influence the pole locations. Root locus is a powerful graphic: rnethod for 
analysis and design of control systems. 

Although the root locus method is commonly used to Htudy the effect of 
control gain variaLiom:>, it is also used to plot the roots of any polynomial 
expressed in the Evans root locus form. Most control systems work by 
regulating the system they are controlling around a desired operating point. 
In practice, control systems muHt have the ability not only to regulate 
around an operating point, but also to reject disturbances and to be robust 
to changes in their environment. The root locus method helps the designer 
of a control system to understand the stability and robustness properties 
of the controller at an operating point. Material in this chapter enables the 
reader to create a root locus and use the locus to understand the closed-loop 
system behavior given an open-loop system and a feedback controller. Case 
studies and exarnplcs that illustrate how to use the root locus for designing 
a control system are presented. 

341 
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5.2 Root Locus 

5.2.1 Background 

Root locus is a powerful graphic method used in the analysis and design 
of control systems. Given a feedback control system, the root locus illus-
trates how the poles of the closed-loop system vary with system parameters 
in particular the closed-loop gain. It is a graph of the location of the roots 
as the system parameters vary in the s-planc. The study of control sys-
tems with respect to system parameters assumes importance in light of the 
following issue::;: 

• How changes in the system's feedback characteristics and other pa-
rameters influence the pole locations 

® Identifying the locations of the closed-loop pole in the s-plane as the 
parameter changes (this produces the root locus). 

• Use of the root locus to design and analyze feedback control systems 

o Use of computers (MATLAB) to generate root loci 

• Root locus design when two or more parameters are varying, e.g., 
PI]) where there are three adjustable parameter::; 

Ill Determination of control system stability from the intersection (or 
lack of intersection) of the root loci with the imaginary axis 

• The addition of poles and zeros (compensation) to the open-loop 
transfer function in order to influence the root locus, thus satisfying 
design specifications (compensator design by the root locus method) 

• Stability can be improved by addition of a zero and worsened by the 
addition of a pole 

5.2.2 The Root Locus: Definition 

Consider the block diagram of a general closed-loop system with a pro-
portional controller gain K shown in Figure 5.1 
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R(s) +r---1 K r--1 __,_. [?(8)] Y(s) 

I . 

FIGURE 5.1 
Closed Loop Unity Feedback Block Diagram 

The closed-loop transfer function is given by 

T( ) = Y(s) 
8 R(s) 

KG(s) 
1 + KG(s) (5.1) 

_ b(s) 
= a(s)' (5.2) 

where a(s) and b(s) are polynomials ins. 
The characteristic equation of a system is based on the transfer function 

that models the system. There is only one characteristic equation for a given 
system. The characteristic equation is defined by equating the denominator 
of the transfer function to zero. Hence, for the system in Figure 5.1 the 
characteristic equation is given by a( s) = 0 and is thus obtained from 

1+KG(s)=O. (5.3) 

The root locus is defined as the set of roots that satisfy this equation 
or as the path traced by the location of the roots of the characteristic 
equation (the poles of the closed-loop system) in the s-plane as the closed-
loop control gain K is varied from zero to infinity, i.e., K 2: 0. Graphically, 
the locus is the set of paths in the complex plane traced by the closed-loop 
poles as the gain is varied. The characteristic equation defines where the 
poles will be located for any value of the control gain, K. In other words, 
it defines the characteristics of the system behavior for various values of 
controller gain. On the root locus, the characteristic equation is always 
satisfied. 

In the context of root locus design methods, the control gain K is also 
called the root locus gain. As the gain is varied, the corresponding varia-
tions in the poles of the closed-loop system determine the root locus. As 
the gain increases from zero to infinity, the poles move from the open-loop 
poles along the locus toward open-loop zeros or toward infinity. The root 
locus gain, K, appears in both the numerator and the denominator of the 
closed-loop transfer function in Equation 5.1. The root locus is created 
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using only the denominator (the characteristic equation) of the closed-loop 
transfer function. 

The varying parameter does not have to be the controller gain, but rather 
any system parameter. Hence, in general, the root locus illustrates how the 
poles of the closed-loop system vary with changes in any system parameter. 
However, before the root locus is determined, Lhe system characteristic 
equation must be written in the fonn of Equation 5.3. This form is called 
the Evant; root locus form and ii is generalized for any system parameter q 
by 

l+qP(s)=O, (5.4) 

where P( s) is a function of s. In this book, emphasis is placed on root loci 
with respect to the control gain K (also referred to as the root locus gain) 
in which case Equation 5.4 is reduced to Equation 5.:3, that is, q = K and 
P( s) = G ( s). However, all the principles and techniques that are discussed 
can be applied to root loci with respect to any varying system parameter 
by starting with Equation 5.4. 

5.2.3 Magnitude and Criteria 

The magnitude and angle criteria are direct results of the definition of 
the root locus. They constitute another way of expressing the root locus 
requirements (magnitude and phase angle). The root locus characteristic 
Equation 5.3 can be expressed in terms of a magnitude and a phase angle 
as follows: 

1 + KG(s) = 0 

KG(s) -1 

IKG(s)l LKG(s) = -1 + jO. 

The equation of the magnitude defines the magnitude criterion 

IKG(s)l = 1. (5.5) 

Every point on the root locus must satisfy this criterion. The magnitude 
criterion is used to determine the locations of a set of roots in the s-plane 
for a given value of K. 

The equation for the phase angle LKG(s) defines the angle criterion 

LKG(s) = tan- 1 ( ~l) (5.6) 

= -180° ± 360k0 , (5.7) 
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where k is an integer. Note that +180° could be used rather than -180°. 
The use of -180° is just a convention and since + 180° and -180° are the 
same angle, either angle produces the same result. Every point on the root 
locus must satisfy the angle criterion. This criterion is used to determine the 
departure angles for the parts of the root locus near the open-loop poles 
and the arrival angles for the of the root locus near the open-loop 
zeros. 

When used together, the magnitude criterion and the angle criteria can 
be used to determine whether a point in the s-plane is on the root locus. 
On the root locus, the characteristic equation is always satisfied and hence 
both the magnitude and angle criteria are also always satisfied. 

5.2.4 Breakpoint, Departure and Arrival Angles 

The angle of departure is the angle at which the locus leaves a pole in 
the s-plane. The angle of arrival is the angle at which the locus arrives at 
a zero in the s-plane. By convention, both types of angles are measured 
relative to a ray starting at the origin and extending to the right along the 
real axis in the s-plane. Both arrival and departure angles are found using 
the angle criterion. When there are multiple poles or zeros at a point in 
the complex plane, the angles arc evenly distributed about the point. 

Breakpoints occur on the locus where two or more loci converge or di-
verge. Breakpoints often occur on the real axis, but they may appear 
anywhere in the s-plane. The loci that approach/diverge from a breakpoint 
do so at angles spaced equally about the breakpoint. The angles at which 
they arrive/leave are a function of the number of loci that approach/ diverge 
from the breakpoint. Breakpoints indicate places on the locus where a mul-
tiple root exists for some value of the root locus gain. A breakpoint may 
have more than two loci leading to/from it. The orcakpoint indimtcs a 
point where a third- or higher-order root exists for some value of K. 

5.3 Constructing the Locus 

This section outlines the steps to creating a root locus and illustrates 
the important properties of each step in the process. By the end of this 
section, the reader shoulcloe able to sketch a root locus given the open-loop 
poles and ~eros of a system. Using these steps, the locus will be detailed 
enough to evaluate the stability awl robustness properties of the closed-
loop controller. In many cases, the designer of a control system needs a 
quick estimate of the behavior of the resulting closed-lo'op system and a 
root locus provides this kind of information. 
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5.3.1 Summary of the Root Locus Steps 

The procedure of drawing a root locus can be summarized into eight 
steps: 

Step 1 Express the characteristic equation in the Evans root locus form 
Step 2 Obtain and draw the open-loop poles ( x) and zeros ( o) 
Step 3 Draw the part of the locus that lies on the real axis 
Step 4 Locate the centroid and sketch the asymptotes (if any) 
Step 5 Determine the breakpoint locations (if any) 
Step 6 Determine the angles of arriva.l/departure 
Step 7 Calculate the imaginary axis crossings (if any) 
Step 8 Draw the rest of the locus by connecting the poles with the break-

points, axis crossings, asymptotes, and arrival angles 
It is important to note that one only has to draw the locus in the upper 

or lower half-plane since the root locus is always symmetric about the real 
axis. 

5.3.2 Details of the Root Locus Steps 

Each of the above steps is covered in detail in this section and the im-
portant properties of each step are illustrated. Using these steps, the Joens 
will be detailed enough to evaluate the stability and robustness properties 
of the closed-loop controller. 

Step 1 Evans Root Le>cus Form 

Write the system characteristic equation in the Evans root locus form 

1 + KG(s) = 0, 

where K is the system parameter of interest and G(s) is a function 
of s. 

Step 2 Open-Loop Zeros and Poles 

Locate the open-loop poles and zeros and denote them by x and o, 
respectively, on the s-plane. Factor G( s) into poles and zeros and 
rewrite the characteristic equation as follows: 

l+KG(s)=O 

1 + K II~l (s- z;) = 0 
Ilj= 1 (s- Pj) 

IIj= 1(s- Pj) + KII~ 1 (s- z;) = 0. 
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Since the locus represents the path of the roots (specifically, paths 
of the closed-loop poles) as the root locus gain is varied, the starting 
point is location of the roots when the gain of the closed-loop system 
is 0. Each locus starts at an open-loop pole and ends at a open-loop 
zero. If the system has more poles than zeros, then some of the loci 
end at zeros located infinitely from the poles. Draw the poles and 
zeros exactly as they appear in the open-loop system. Include all of 
the poles and zeros, i.e., poles and zeros of both the controller and 
the uncontrolled system. The poles will be the starting points of the 
loci, and the zeros will be the ending points. 

When K = 0, then the roots of the characteristic equation give the 
poles of G(s) 

When K = oo, then the roots of the characteristic equation give the 
zeros of G(s) 

The loci of characteristic equation roots begin at the poles and ends at 
the zeros of G(s) asK increases from 0 to oo. Note: most functions 
G(s) have zeros that lie at oo, because they have more poles than 
zeros i.e. n > m. ( n is the number of poles and m is the number of 
zeros) ( n - m )" branches of the root locus approaching the ( n - m) 
zeros at infinity 

Step 3 Real Axis Crossings 
Draw the part of the locus that lies on the real axis. Locate the 
segments of the real axis that are part of the root loci. The root locus 
on the real axis lies in a section to the left of an odd number of poles 
and zeros. 

Many root loci have paths on the real axis. The real axis portion of 
the locus is determined by applying the following rule: 

If an odd number of open-loop poles and open-loop zeros lie to the 
right of a point on the real axis, that point belongs to the root locus. 
Note that the real axis section of the root locus is determined entirely 
by the number of open-loop poles and zeros and their relative loca-
tions. Since the final root locus is always symmetric about the real 
axis, the real axis part is fairly easy to carry out. 

Start at positive infinity on the real axis. Move toward the origin 
until a pole or zero is encountered on the real axis. Draw a line from 
this pole/zero until the next pole or zero on the real axis is reached. If 
there are no more poles/zeros, the locus extends to negative infinity on 
the real axis. Otherwise, the locus starts again at the next pole/zero 
and continues to its successor, and so on. 

If there are no poles or zeros on the real axis, then there will be no 
real axis component to the root locus. Some systems have more than 
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one pole or zero at the same location (this indicates a double, triple, 
or even higher-order root to the characteristic equation). If there are 
an odd number of poles or zeros at the same location, the real axis 
part of the locus continues after the location of that pole/zero. If the 
number of poles/zeros at the location is even, the real axis part of 
the locus stops at that location. Pick any point on the real axis. If 
there is an odd number of roots to the right of that point, that point 
on the axis is a part of the locus. If there is a multiple root, then the 
real axis part depends on whether there it:> an even or odd number of 
roots at the same point. 

Step 4 Centroid and Asymptotes 
The asymptotes indicate where the poles vvill go as the gain ap-
proaches infinity. For systems with more poles than zeros, the number 
of asymptotes is equal to the number of poles minus the number of 
zeros. In some systems, there are no asymptotes; when the number 
of poles is equal to the number of zeros, then each locus is terminated 
at a zero rather than asymptotically to infinity. The asymptotes are 
symmetric about the real axis, and they stem from a point defined by 
the relative magnitudes of the open-loop roots. This point is called 
the centroid. Note that it is possible to draw a root locus for sys-
tems with more zeros than poles, but such systems do not represents 
physical systems. In these cases, some of the poles can be thought of 
as being located at infinity. First determine how many poles, n, and 
how many zeros, m, are in the system, then locate the centroid. The 
number of asymptotes is equal to the difference between the number 
of poles and the number of zeros. The location of the centroid a 011 

the real axis is given by: 

where Pi and ZJ are the poles and zeros, respectively. Since p; and z7 
are symmetric about the real axis, their imaginary parts get cancelled 
out. 

Once the centroid has been located, the next step is to draw the 
asymptotes at the proper angles. The asymptotes will leave the cen-
troid and angles defined by 

±1800 (2q + 1) 
n-m 

Step 5 Breakpoints 

where q=0,1,2, ... (n-m-1). 

Breakpoints occur where two or more loci join, then diverge. Al-
though they are most commonly encountered on the real axis, they 
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can also occur elsewhere in the complex plane. Each breakpoint is a 
point where a double (or higher-order) root exists for some value of 
K. Mathematically, from the root locus equation 

1+KG(s)=O 

KG(s) = -1 

-1 
K = G(s) 

-1 

( b(s)) 
a(s) 
a(s) 

- b(s)' 

where the transfer function G(s) consists of a numerator, b(s) and 
denominator, a ( s), then the breakpoints can be determined from the 
roots of 

dK 
ds 

_ [b(s) da(s) _ a(s) db(s)] 
-=----d_s_-c;----d-,s--=-- = O. 

[b(s)] 2 

If K is real and positive at a value s that satisfies this equation, then 
the point is a breakpoint. There will always be an even number of 
loci around any breakpoint because for each locus that enters the 
breaking point, there must be one that leaves. 

Perhaps the easiest way to find breakpoints is by trial and error. 
First, determine the characteristic equation of the system in terms 
of K. In the vicinity of the suspected breakpoint, substitute values 
for s in this equation. A breakpoint occurs when the characteristic 
equation is minimized. To calculate the breakpoint explicitly requires 
obtaining the derivative of the characteristic equation in terms of s 
and then equating to z;ero. The resulting equation is then solved for 
K and s. 

Step 6 Angles of Arrival/Departure 
The angle criterion determines which direction the roots move as the 
gain moves from zero (angles of departure, at open-loop poles) to 
infinity (angles of arrival, at open-loop 11eros). An angle of depar-
ture/arrival is calculated at the complex open-loop poles and zeros. 



356 Design and Analysis of Control Systems 

Angle of departure. 

At each complex pole, add up the angles from the zeros to the current 
pole, then subtract the angles from the other poles to the current pole. 
In mathematical terms, for a given pole, the angle of departure is 

n n1 

edep = 180- z=ei-
i=l j=l 

where ei is the angle between the ith pole and the given pole and ¢j 
is the angle between the jth zero and the given pole. These angles 
can be calculated using trigonometry. 

Angle of aTTival. 

At each zero, add up the angles from the poles to the current zero, 
then subtract the angles from the other zeros to the current zero. In 
mathematical terms, for a given zero, the angle of arrival is 

n m 

ea/T = 180+ z=ei- L<Pj, 
i=l j=l 

where ei is the angle between the ith pole the given zero, and ¢j is 
the angle between the jth zero and the given zero. 

By convention, the arrival and departure angles are measured relative 
to the real axis, so that the positive real axis is 0. 

Note that single poles and zeros on the real axis will always have ar-
rival/departure angles equal to 0 or 180 degrees due to the symmetry 
of the complex conjugates. 

Step 'l Axis Crossings 
The points where the root locus intersects the imaginary axis indicate 
the values of K at which the closed-loop system is marginally stable. 
The closed-loop system will be unstable for any gain for which the 
locus is in the right half-plane of the complex plane. 

If the root locus crosses the imaginary axis from left to right at a point 
where K = K 0 and then stays completely in the right half-plane, then 
the closed-loop system is unstable for all K > K 0 . Therefore, knowing 
the value of K 0 is very useful. 

Some systems are particularly complex when their locus dips back 
and forth across the imaginary axis. In these systems, increasing the 
root locus gain will cause the system to go unstable initially and then 
become stable again. 
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Not every locus will have imaginary axis crossings. First, determine if 
the locus will definitely cross the imaginary axis (for example, if there 
are more than two asymptotes), or if there is a good chance that the 
locus crosses the imaginary axis (for example, if there are poles or 
zeros close to the imaginary axis and/ or the arrival/ departure angles 
leads to the conclusion that the locus may cross the axis). 

There are three ways to find the points where the locus intersects the 
imaginary axis: 

( 1) Trial and error (bracketing). 

(2) The Routh-Hurwitz stability criterion. 

(3) Solving for omega (wd) and K. 
The method used depends on the accuracy required for the locations 
of the axis crossings. 

Trial and error. 
Start at the origin in the complex plane. Move up the imaginary axis 
in discrete steps and calculate the phase of the forward loop transfer 
function at each step. If the phase at the last point was less than 180 
degrees ~tnd the phase at the current point is greater than 180 degrees 
(or vice versa) then an axis crossing lies between the two points. If 
the phase is equal to 180 degrees, then the point is on the locus and 
is an inwginary axis crossing point. 

By bracketing regions on the imaginary the axis crossings can 
be quickly determined. Rather than working up from the origin in 
regular steps, bracketing uses a binary search approach in which two 
points are tested, then another point is chosen based on whether 
there was a phase change between the two points. If there wa::; a 
phase change, the third point is chosen between the two, if not, it is 
chosen outside the two. 

Routh-H1trwitz Stability CriteTion. 
From the characteri"tic equation, the matrix of coefficient;,; is created 
as is done when determining the stability of the system (as developed 
in Chapter 4). Then, from the matrix of coefficients, solve forK such 
that the stability criterion is met. Then solve for s to ddcrmine where 
on the imaginary axis the gain K is in effect. Note that this method 
can be very difficult to use, especially for systems with many poles 
and zeros. 

Solving for Wd and K 
Let s = jwd in the characteristic equation, equating both the real and 
imaginary parts to zero, then solve for wd and K. The value;,; of Wd 

arc the frequencies at which the root loci cross the imaginary axis. 
The value of K is the root locus gain at which the crossing occurco. 
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Step 8 Sketch the Complete Root Locus 

The complete root locus can be drawn by starting from the open-loop 
poles, connecting the real axis section, breakpoints, and axis crossings, 
then ending at either the open-loop zeros or along the asymptotes to 
infinity and beyond. 

If the hand-drawn locus is not detailed enough Lo determine the be-
havior of your system, then MATLAB or some other computer tool 
can be used to calculate the locus exactly. 

Now sketch in the rest of the locus. Use the asymptotes, arrival 
angles, departure angles, breakpoints, and axis crossings to guide the 
c;kctch. The final locus will include these points and will connect them 
smoothly. The shapes of the locus parts will depend on the proximity 
of the open-loop roots to each other. 

In general, zeros tend to repel the locus, whereas poles tend to attract 
the locus. One locus segment tends to attract another locus segment 
until a breakpoint forms. 

Typically, the only time needed to determine exactly the locus shape 
is when the locus is near the imaginary axis or in regions where a 
detailed understanding of the system behavior in the time domain 
is required. In these cases, if the previous steps did not yield locus 
details sufficiently accurate for the specific purposes, then use a com-

tool to generate the locus exactly. These are some root locus 
plots for a of systems. They include the construction marks for 
arrival/ departure angles, asymptotes, breakpoints, and axis crossings. 
Note that in some cases, a slight change in pole or zero coordinates 
can result in a markedly different locus. Note also, however, that 
such small changes to the roots will not change more general locus 
characteristics, such as the number of asymptotes. 

5.3.3 Determining the Control Gain (Root Locus Gain) 

The root locus shows graphically how the system roots will move as the 
root locus gain is changed. Often, however, one must determine the gain 
at critical on the locus, such as points wltc,rc the locus c:ros::;es the 
imaginary axis. The magnitude criterion is used to determine the value of 
the root locus gain J( at any point on the root locus. The is calculated 
by multiplying the lengths of the distance between each pole to the point 
then dividing that by the product of the lengths of the distance between 
each zero and the point. Note that a linear change in position on the locus 
usually does not correspond to a linear change in the root locus 
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5.3.4 Root Locus for Second-Order Systems 

In Chapter 3, the s-plane or complex plane was introduced as a two-
dimensional space defined by two orthogonal axes, the real number axis 
and the imaginary number axis. A complex pole (a complex number) has 
both a real component ( -O") and an imaginary component (wd) such that 

As discussed in Chapter 3, any second-order system's characteristic equa-
tion can be represented by the general equation 

The corresponding general roots of this equation are given by 

where 

s= 
-b ± )b2 - 4ac 

2a 

-2~wn ± J 4ew~ - 4w~ 
2 

= -~wn±Wn~ 

=-~Wn±)wnP 
= -O" ±jwd, 

()" = l;wn and Wd = WnVl-- e. 
The following figure compares the generic root with a general point in the 
s-plane. 

Im 

1--0'-

S-plane 
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From this figure it follows that 

(J 
tane =-

Wd 

Wn~ 
~ sin{) 

tan{)= ~ cos{) 
vl-~ 

==} sin {) = ~ (and cos {) = ~;-~th 
==} {) = sin- 1 ~· 

Since the roots ( -CJ ± jwd) and t.he control gain (root locus gain) X are 
related by the characteristic equation or the magnitude criteria 

l+KG(s)=O 

IKG(s)l = 1, 

it follows that the gain K required to produce a particular damping ratio~ 
or damping angle {) can be determined. Similarly, given Lhe root locus 
(control gain) K, the system damping ratio~ or damping angle () can be 
obtained. These properties will be illustrated later in some examples. 

5.4 Examples of Root Locus Design 

Example 5.1 Consider the feedback contml system shown below where 
](:::: 0. 

R(s) Y(s) 

FIGURE 5.2 
Root Locus Diagram 

(a) Fin.d the root locus of the system with respect Ia the controller gain 
K 

(b) For what range of K is the system stable ? 



Root Locus Design Methods 361 

(c) Find the value of the ga'in K that will allow the system to have a mot 
at 

1 . V3 s = -- +J-. 
2 2 

(d) Find the controller gain K that will be req'uiTed to g·ive the system a 
damping mtio o.f ~ = 0.5. 

Solution 5.1 (a) The closed-loop transfer function of the system is given 
by 

Hence, the characteTistic equation (in Evans root locus form) is given by 

K 
1 + = 0 s(s + 1) 

K 
1+ =0 

(s+O)(s+1) 

The system has two poles one at s = 0, another at s = -1, and no zeros. 
Rewriting the equation gives 

s(s+1)+K=O 

For K = 0, the roots of the characteristic equation are at 0, and -1. The 
two roots are given from the solution of the quadratic equation. 

s2 + s + K = 0 
1 1 

·r1 r0 = -- ± -v1 - 4K ' ~ 2 2 

The root locus is thus descTibed by the following equations: 

1 1 
j(x) = r1, T2 = -2 ± 2.)1- 4K 

1 1 
T1,T2 = -2 ± 2jy'4K -1 

joT K = 0 

for 
1 

O<K<-- -4 

1 
joT K > 4. 
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For 0 :::; K :::; ~ the roots are real (Note that K 
1 

is ~ot negative) and 

lie between -1 and 0. ForK= 0, the roots are - 2 ± 2 ===> -1 and 0, 

1 when K > 4 the roots are complex. The two complex roots are of the form 

-~ ± aj, where a is a real positive constant. Thus, the root locus starts 
from the poles at 0 and -1 and move toward each other until both roots 
are equal to - ~, then as K continues to 

1 
increase the roots become complex 

and the locus moves from the point ( - 2, 0) toward positive and negative 
1 

infinity, parallel to the imaginary axis, describing the line - 2 ± aj. The 
root locus is shown below 

2 

1.5 

! 0.5 

~ 0 
·~ -0.5 
] -1 

-1.5 

-2 -2 -1.5 -1 -0.5 

i 

' 
0 0.5 

Real Axis 
K 

Root Locus for 1 + s(s + 1) = 0 

1.5 2 

(b) In order to find the range of K for which the system is stable, the 
objective is to exclude any roots that are not in the LH P. Such a root is at 
s = 0 (where K = 0). Therefore, the range of K for which the system is 
stable is given by 

K>O. 

(c) The value of the gain K that will allow the system to have a root at 
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is determined by using the magnitude criterion. 

IKG(s)l = 1 

ls(s: d = 1 

IKI = 1 
lsi Is+ 11 

Substituting for the root and solving for K leads to 
K 

If the root is at s = -0.5, K is similarly obtained from magnitude criterion 

I K 1-1 s(s+1) -

K 

-~ (~) 
=1 

K=~ 
4 

If the root s = 0, K is similarly obtained from the magnitude criterion 

I 0(0: 1) I= 1 ==? K = 0 
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(d) The general pole is of the form 

where 

1 
J=-

2 
0" 0" 

and tanB =- ==? wd = --0 Wd tan 

If the damping ratio, ~ = 0.5, then the damping angle is given by 

1 
-

==} Wd = 2 
tan30° 

Therefore, the root for~ = 0.5 is given by 

1 ./3 
S=--+J-. 

2 2 

Hence, the value of K that allows the system to have this root is then 
obtained by the magn·itude criterion. In fact, this problem is now similar to 
(c). Substituting for the root in the expression for the magnitude criterion, 
and solving for K leads to 

IKG(s)l = 1 

K 
--=1 
1 X 1 

K=l. 

Example 5.2 Finding root locus for the given block diagram. 
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R(s) I Y(s) 

I . 

Feedback System 

(a) Find the mot locvs of the system with respect to the conlroller gain 
K. 

(b) For what range of I( is the system stable 

(c) Find the value of the gain K that will allow /Jw system to have a root 
at s = -1. 

Solution 5.2 (a) The starting point is deriving the characteristic equation 

l+KG = 0 

2s+4 2K(s+2) 
l+K 2 4 =0=?1+ ') 4 =0 s + s s~ + s 

The characteristic equation is 

K=O 

B(s + 4) + 2K(s + 2) = U 

poles at 0, -4 and K = oo gives zeros at -2. 

s2 + s(4 + 2K) + 4K = 0 

s = -(2 + K) ± V(2 + K)2- 4K 

(2 + K) ± -j 4 + [(2 

The expression under the square root, ( 4 + K 2 ) is always positive, and 
moreover 

(2 + K) ;;; J 4 + K 2 for 0 :::; K :::; oo 

This that sis negative. AsK--+ oo, s1 --+ and s2 --+ -2K, which 
means s --+ oo. The root locus {shown below) lies on the negative real axis 
between 0 and -4 and oo as K goes from 0 to infinity. 



366 

8 

6 

4 

] 2 

~ 0 
I 

~ 

l 
'5:b -2 
m 
6 -4 ..... 

-6 

-8 
-8 
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-~ .. 

-6 -4 ,_2 2 4 
Real Axis 

Root Locus for 1 + K ( 2
2s + 11 

) = 0 
s + 4s 

6 8 

(b) In order to find the range of K for which the system is stable, the 
objective is to exclude any mots that anc not in the LH P. Such a mot is at 
s = 0 (where K = 0). Therefore, the range of K for which the system is 
stable is by 

K > 0. 

(c) Finding gain at specific mot location say s = -1. Substituting s = -1 
in the magnitude criterion 

Kl2s+11 = 1 
!s!!(s + 4)1 

K = 1-111-1 + 41 = ~. 
21-1+21 2 

Example 5.3 Consider the block diagram of a feedback control system 
shown below, where the controller gain is s11ch that K ?: 0. 

R(s) 1 I Y(s) 

I .. s 2+2s-3 

Root Locus System 

(a) Find the system root Lucus with respect to the controller gain K. 
(b) For who. I. range of K is the system stable? 
(c) Find the value of the gain K that will allow the system to have a root 

o.t s = -1 + 3j. 
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Solution 5.3 (a) The closed-loop transfer function of the system is given 
by 

Hence, the characteristic equation (characteristic) (in Evans root locus 
form) is given by 

K 
1+ 2 3 =0 s + 2s- c 

K 
1+ =0 

(s-1)(s+3) 

The system has two poles, one at s = -3, anotheT at s = 1, and no zeros. 
Rewriting the equation gives 

s2 + 2s + (K- 3) = 0 

ForK = 0, the mots of the characteristic equation an: at -3, and l. The 
two roots aTe given from the solution of the quadratic equation 

s2 + 2s + (K - 3) = 0 

S=-1±V4-K. 

For 0 ::; K ::; 4 the roots are real (take note K is non negative) and lie 
between -3 and 1. ForK= 0, the roots are -1 ± 2 ==? -3 and 1, when 
K > 4 the roots are complex. The two complex roots are of the form -1±aj, 
where a is a real positive constant. Thus, the root locus starts from the poles 
at 1 and -3 and move toward each otheT until both roots are equal to -1. 
Then as K continues to increase the roots become complex and the Locus 
moves fnnn point ( -1, 0) toward positive and negative infinity, parallel to 
the imagirwry axis, describing -1 ± aj. All points on the root locus must 
satisfy the magnitude and angle criteria. The root locus is shown in the 
following diagram. 
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4 

3 

2 

"' 1 
~ 
~ 0 
;:: 

'5h -1 
·. 

ell s -2 -
-3 

-4 
-4 -3 -2 -1 0 2 

Real Axis 
K 

Root locus for 1 + s2 + 2s _ 3 = 0 

(b) For the range of K that permits system stability, the objective is to 
exclude any roots that are not in the LH P. S11ch roots are in the range 
0 ~ s ~ 1. The critical point is where the root locus crosses the imaginary 
axis into the RHP. Stability means the mots should be strictly in the LHP 

-1±)4-K < 0 

=?4-K<l 

~K>3. 

Therefore, the range of K for which the system is stable is given by 

K>3. 

It is important to note that at K = 3 the system is marginally stable (it has 
a root 0 at the origin). The same result can be obtained by using the Routh 
Hurwitz criteria as shown below. 

s2 + 2s + (K- 3) = 0. 

s2 1 K- 3 
s1 2 0 
s0 (K- 3) 

(K- 3) > 0 

K>3. 
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The advantagr; of determining stability conditions fTOm Routh-Hurwitz ar-
ray as opposed to root locus plots is that it is not necessary know the location 
of the roots. This advantage is important in higher-order system.'!, where it 
·i.'J not easy to obtain thr roots. 

(c) The gain at the 8pecific root location, 8 = -1 + 3j, i.'J obtained by 
8Ub8tituting thi.'J Toot in the expn:ssion for the maynitude criterion 

I K I s 2 + 28- :3 
=1 

K =1 
182 + 2s -- 31 

1(-1+3j) 2 +~\-1+3j)-31 = 1 

I (1 - 6j - 9) :( -2 + 6j) _ 31 = 1 

--1 I K I -1 :~ 

K = 13. 

Example 5.4 Consider the following block diagram wheTe K has a fixed 
value (e.g., K=l) and the parameter of interest is c. 

R(s) +o--1 K Y(s) 

Feedback System 

(a) Find the root locus of the system with respect to the pammeter c. 
(b) FoT what range of c is the system stable. 
(c) Find the value of the gain c that will allow the system to have a root 

1 
at s- --- 2' 

Solution 5.4 (a) The characteristic equation of the system is given by 

l+KG(s)=O 
K 

1 + = 0 s(s +c) 

s(s +c)+ K = 0. 
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The Evans root locus form is obtained as follows: 

s(s+c) +K = 0 

s 2 + cs +K = 0 

s2 + K + cs = 0. 

Dividing throughout by ( s 2 + K) gives the Evans root locus form 

s 2 + K + cs = O 
s2 +K s2 +K 

cs 
1 + 2 K = 0. s + 

ForK= 1, the Evans root locus form reduces to 
cs 

1 + s2 + 1 = 0. 

The roots of the characteristic equation 

s 2 + cs + 1 = 0, 

are of the general form 

s -~ ± JC2=4 
2 2 

c .v4-c2 

====>s=-2±] 2 

For c = 0 the roots are at s = ±j.JI. Using the general form of the roots, 
let the real part be x = - ~, the imaginary part 

)4- c2 
y=±---

2 

Consider the following function 

c2 4-c2 

=-::r+-4-=1 

=1 

This is the equation of a circle of radius 1 with its center at the origin. 
Since the parameter c is positive, the root locus will include only the LH P 
(or second and third quadrants of the circle) because x is always negative. 
The root locus is shown in the following figure. 
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0.5 

····----+------() 

Real Axis 
cs 

Root Locus for 1 + - 2--1 s + 
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(b) In oTdeT to deteTminc the range of c joT which the system is stable, 
the objective 'ts to exclude any roots that are not in the LH P. Sw:h Toots 
aTe at s = ±j 1 (wheTe c = 0) and at s = 0 (where c = oo). TheTefoTe, the 
range of c for which the system is stable is given by 

0 < c < 00. 

(c) The value of the parameter c that will allow the system to have a root 
at 

1 
s = -2, 

is obtained using the magnitude criterion. 

lcP(s)l = 1 

---1 I cs I 
s2 + 1 -

c~-~~ 
I~+ 11 

=1 

5 . 5 
==} C =- X 2 = -. 

4 2 



372 Design and Analysis of Control Systems 

Example 5.5 The following figure shows the speed control system of an 
assembly plant. 

r(t) +~IXl_- 1 
ref. ~~ -:-(s-+--;-;1)---,-(s-+-p) 
speed 

FIGURE 5.3 
Control System for an Assembly Plant 

y(t) 

actual 
speed 

(a) Determine and plot the range of K and p that permits stable opera-
tion. 

(b) In the assembly plant, if p = 2, sketch the root locus of the system 
as K varies from 0 to oo 

Solution 5.5 (a) The transfer function for the system is given by 

K 
T(s) = s3 + (p+ l)s 2 +ps+K 

Stability condition is established by using the Routh-Hurwitz array 

s3 1 p 
s2 l+p K 
s1 b 0 
s° K 

where the conditions for stability are established as follows: 

K > 0 

( 1 + p) > 0 ==? p > -1 but p > 0 

=?p> 0 

b = P2 +p- K > 0 
1+p 

'* K < p2 +p 

==? 0 < K < p 2 + p and p > 0. 

(coefficient of s) 

(b) For p = 2 the characteristic equation, expressed in Evans root locus 
form, is given by 

K 
1 + = 0. 

s3 + 3s2 + 2s 
Using the eight root locus steps gives the locus shown below 
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2 
·~l 

1.5 

1 
I 

~ 0.5 

i -0.5or 
.§ -1 c 

-~: L ~-~~---------::'--c~--------,L-:=------
-2 -1.5 -1 -0.5 0 0.5 1.5 2 

Real Axis 

K 
Root Locu.s for 1 + 3 3 2 2 = 0. 

s· + s + s 
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Example 5.6 Consider a chemical processing plant represented by the fol-
lowing system, 

K 
KG(s) = s(s + l)(s + 5) · 

(a) Draw the root locu.s of the sysl.tm. 
(b) For what value of K are the mots on the imaginary axis? 

Solution 5.6 (a) The starting point is Pxpressing the transfer in the Evans 
root locus form. 

K KG ( s) = --,----:--:---,-
s(s + l)(s + 5) 

1 + KG(s) = 0 

K 
1 + = 0 s(s + l)(s + 5) 

s(s+l)(s+5)+K =O 
s(s + l)(s + 5) 

The root locus is shown in the following diagram. 
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10 

8 

6 

4 

~ 
2 

Cl 0 Cll 
.E 

-2 

-4 

-6 

-8 

-1~0 -8 -6 -4 -2 0 2 
Real Axis 

Root Locus 

(b) The characteristic equation is given by 

l+KG(s)=O 

1+ K =0 
s(s + l)(s + 5) 

s(s + l)(s + 5) + K = 0 

s3 + 6s2 + 5s + K = 0 

The Routh-Hurwitz array is obtained as 

1 
6 

30-K 
6 
K 

5 
K 

6 

0 

4 6 8 10 

For stability, the coefficients in the first column should be greater than 
zero. On the imaginary axis the coefficients are equal to zero. 

30-K 
===} = 0 or K = 0 

6 
===} K = 30 or 0. 

Alternatively, the same results can be obtained by directly solving the char-



Root Locus Design Methods 

acteristic equation. This is done as follows: 

s3 + 6s2 + 5s + Kls=jw = 0 
===} ( -6w2 + K) + ( -w3 + 5w )j = 0 

===} w = ±J5,o K = 30,3o,o 

===} K = 30 or 0 

Example 5. 7 Draw root locus plots for the following systems 

(a) 

(b) 

(c) 

Solution 5.7 (a) 

KG(s) = K(s2 + 2s + 12) 
s(s2 + 2s + 10) 

KG(s) = K(s + 3) 
s(s + 1)(s2 + 4s + 5) 

KG(s) = K(s + 2) 
s4 

KG(s) = K(s2 + 2s + 12) 
s(s2 + 2s + 10) 
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K(s + 1 + jy'IT)(s + 1- jy'IT) 
s(s + 1 + j3)(s + 1- j3) 

n-m=3-2=1 

<Pasy = 180 

Angle of departure ¢ = -18.4 

Angle of arrival ¢ = 16.7° 

Imaginery axis crossing (jw crossing) none (by Routh criterion) 

Hence, the root locus is of the form shown in the next figure. 
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6 
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2 
rJl 

~ 
Ol 0 ro 
.§ 

-2 

-4 

-6 

-6 

(b) 

-4 -2 
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0 
Real Axis 

Root Locus {b) 

2 4 

( '( ) K(s + 3) K J s = --,----,-.;--;::.--':---,--:c--
s(s + l)(s 2 + 4s + 5) 

6 

"G( ) K(s + 3) 
K s = s(s+l)(s+2+j)(s+2-j) 
n-m=4-1=3 

rPasy = ±60°, 180 

2 
a=--

3 

Angle of departure from ¢ = -153.4° 

Imaginary axis cmssing (jw crossing) s = ±jl.38 

Breakaway point s = -0.44 

BTeak-in point s = -3.65 

Hence, the root locus takes the form shown in the following diagmm. 
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"' ">< < 
~ .s 
tl!l ro s -

(c) 

8 

6 

4 

2 

0 

-2 

-4 

-6 

-8 
-8 -6 -4 -2 0 2 4 

Real Axis 

Root Locus (b) 

KG(s) = K(s + 2) 
s4 

n-m=4-1=3 

cPasy = ±60°, 180 

2 
a=-

3 

6 

Angle of departure from s = 0 : ¢ ±45°, 135° 

Imaginary axis crossing (jw crossing) s 0, K = 0 

Breakaway point s=O 

Break-in point 8 
s = --

3 

Thus, the root locus takes the structure shown in the next diagram. 

377 

8 
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4 ---

3 

2 

"' ~ 
~ 0 
.s -1 r ....... -2 

-3 

-4 l 

-4 -3 -2 -1 0 2 3 4 
Real Axis 

Root Locus (c) 

Example 5.8 Consider a modular robotic system that is described as fol-
lows, 

rG K(s + 2) 
~ (s) = -s(-:-s-----'-1.,--,)(-s --'-+-6):-c:-2 · 

(a) Draw the root locus for the system. 
(b) Verify that the root locus does noL cross the imaginary a;ris by using 

the Routh-Hurwiiz array. 

Solution 5,8 (a) 

KG( ) _ K(s + 2) 
T 

8 - s(s- l)(s + 6) 2 

n-m=4--1=3 

¢asy = ±60°, 180 

a= -3 

Breakaway point s = 0.488 

Imaginary axis crossing (jw crossing) none 

Hence, the mot locus is of Lhe form shown in the ne.Tt diagram. 
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10 

5 

(/) 

~ 
g' oc----~ 

..5 

-5 

-10 

-10 -5 5 

Root Locus (e) 

(b) The characteristic equation is g'iven by 

l+KG(s) 0 

l+ K(s+2) =O 
s(s- l)(s + 6)2 

s(s-l)(s+6)2 +K(s+2) =0 

s4 + lls3 + 24s2 + (K- 36)s + 2K = 0 

The Routh-Hurwitz array is obtained as 

1 24 2K 
11 K-36 

300 -K 
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10 

For stabil'ity, all the coefficients in the first column must be greater than 
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zero. At the point of crossing the imaginary axis the coefficient b1 is zero. 

b1 = 0 =::;. K 2 - 94K + 10800 = 0 

-b ± -../b2 - 4ac 
K=------

2a 

94 ± -../942 - 4 X 10800 
2 

= 47 ± v' -8591 

= 47 ± j92.69 

=::;. J( is not a real number since it has an ·imaginary component. 

Hence, there is no imaginary axis (s = jw) crossing forK> 0. 

Problem 5.1 Consider a dynamic system whose state-variable matrix equa-
tions are expressed as follows: 

x = Ax+Bu 
y = Cx+Du 
u = r- y. 

The matrices A, B, C, and D are given by 

[ 
0 1 0 l A= 0 0 1 , B- 1 

[ 0 l 
-160 -G6 -14 -14 

C= [100], D= [OJ. 

(a) Use MATLAB to find the transfer function of the system. 
(b) Draw the system block d·iagram, indicating the ·matrices A, B, C, and 

D, the vectors x and x, and the variables r(t), n(t) and y(t). 
(c) Compare the root locus obtained by using the state-variable fonn and 

that obtained using the transfeT function form. 

Solution 5.9 (a) The transfer function is obtained by using the following 
MATLAB command 

[num, den] = ss2tf(A, B, C, D). 

num = [ 0 0 1 0] 

den = [ 1 14 56 160] 
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Therefore, transfer function 'is given by 
s T ( s) - ---:::------:::------

- s 3 + 14s2 + 56s + 160 

(b) The system block diagram is given by 

State Space System 

381 

(c) The root locus plot for this system can be obtained with MATLAB by 
use of the following command: 

rlocus (A, B, C, D) 

This command will produce the same root locus plot as can be obtained by 
use of the rlocus (num, den) command, where num and den are obtained 
from 

[num, den] = ss2tf(A, B, C, D). 

The root locus diagram is shown in the following diagram 
Root-Locus Plot of System defined in State Space 

25 ,--------.---,--------,---- -,-----,--- --~ 

20 ~ 
15 

10 

5 

~ 
"' 0 "' .5 

-5 

-10 

-15 

-20 

-25 
-10 -8 -6 -4 -2 0 2 4 

Real Axis 

Root Locus for a System Defined in State Space, 
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5.5 Dynamic Compensation: Lead and Lag 

The addition of poles and zeros (compensation) to the open-loop transfer 
function in order to reshape the root locus diagram to satisfy design spec-
ifications constitutes compensator design by the root locus method. For 
example, stability can be improved by the addition of a zero and worsened 
by the addition of a pole. 

Lead compensation acts mainly to lower rise time and decrease the tran-
sient overshoot. Generally, lead compensation approximates derivative con-
trol. Lag compensation is usually used to improve the steady state accuracy 
of the system and it approximates integral control. Cornpensation with the 
transfer function of the form 

D(s)=s+z, 
s+p 

is called lead compensation is z < p and lag compensation if z > p. 

1 + f{ D(s)G(s) = 0 

Controller Plant y 
2: KAD(s) KGD(s 

To explain the basic stabilizing effect of lead compensation of a sys-
tem, a simplified D( s) = s + z is considered. This is the same as the 
proportional-derivative (PI) control. This compensation is applied to the 
case of a second-order system with transfer function 

K G(s) = --,-K-....,.. 
s(s + 1) 

The G( s) has root locus as shown in the following figure and shown in 
the next figure is the root locus produced by D(s)G(s) in the circle. The 
effect of zero is to move the root locus to the left more stable part of the 
s-plane. The root locus of the compensated case was produced by using 
D(s)=s+2. 
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0 -

-0.5 

-1 

-1.5 

-2_L----1.__L_.-----:-L:-------o---::"-=--__L___._.__~ 
~ -1.5 -1 -0.5 0 0.5 1.5 2 

Real Axis 

-~L_ ____ ~3----~-2L_ ____ ~1----~o ____ _L ____ ~2-----L3----~4 

Real Axis 

The trouble with choosing D(s) based on only a zero is that the physical 
realization would contain a differentiator that would greatly amplify the 
inevitable high-frequency lloise from the sensor signal. 
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5.6 Extensions of Root Locus Method 
The root locus technique is a graphical scheme to show locations of pos-

sible roots of an equation as a real parameter varies. So far only polynomial 
equations for linear systems have been considered. Two additional types of 
systems are considered, systems with (i) time delay (ii) nonlinear elements. 

5.6.1 Time Delay 

Time delays often arise in control systems, both from delays in the process 
itself and from delays in the processing of sensed signals. Chemical plants 
often have processes with a time delay representing the time material takes 
to flow through the pipes. In measuring the altitude of a spacecraft en route 
to Mars, because of the speed of light, there is a significant time delay for 
the sensed quantity to arrive back on Earth. There is also a small time 
delay in any digital control system due to the cycle time of the computer 
and the fact that data is being processed at discrete intervals. Time delays 
always reduces the stability of a system; therefore, it is important to be 
able to analyze its effect. In this section, the use of the root locus for such 
analysis is presented, though frequency-response methods are easier. 

As an example of a system with time delay, consider the system transfer 
function 

e-5s 

G ( s) = ..,...,( 1-=-0 s-+----:-:-1 )-:-:( 6-::-0 s.,--+----,-,-1) 

where e-5s term arises from the time delay. The root locus equations are 

1+KG(s)=O 

e-5s 

1+K =0 
(lOs+ 1)(60s + 1) 

600s2 +70s+ 1 + Ke- 58 = 0. 

Since it is not a polynomial, the previous methods cannot be used to plot 
the root locus. 

One approach is to find an approximate rational function for the non-
rational function e-5s. It consists of matching the series expansion of the 
transcendental function e-5s with the series expansion of a rational func-
tion whose numerator is a polynomial of degree p and denominator is a 
polynomial of degree q. The result is called (p, q) Pade approximation to 
e-5s. Initially, the approximant to e-s is computed, and in the final result 
substitute Tds for s to allow for any delay. To illustrate the process begin 
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with (1, 1) as an approximation. In this case, the objective is to select b0 , b1 , 

and a0 so tha L the error is given by 

is small. Expand the rational function using McLauren series and match 
as many terms of the initial terms as possible. The two series are 

s2 s 3 s4 
e-8 = 1 - s +I - I + I - .... 

2. 3. 4. 

Matching the first four coefficients 

bl = 1 

(bo- aobl) = -1 

1 
-a0 (b0 - aabl) = 2 

2 1 
ao = -6 

Substituting Tds for s the resulting approximant is 

If it is assumed that p = q = 2 then five parameters are obtained and a 
better match is possible. In this case (2, 2), the approximation is available 
as 

1- (Tds/2) + (Tds) 2 /12 

1 + (Tds/2) + (Tds )2 /12 · 

In some cases, a very crude approximation is acceptable, and the (0, 1) can 
be used, which is a first-order lag given by 
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5.6.2 Nonlinear Systems 

Real control systems are inherently nonlinear, and the linear analysis and 
design methods that have been described so far use linear approximations 
to the real models. There is one important category of nonlinear systems 
for which some significant analysis (and design) can be done. This com-
prises the systems in which the nonlinearity has no dynamics and is well 
approximated as a gain that varies as the size of its input signal varies. 
Somn of such arc shown in Figure 5.4. 

5. 7 Computer-Aided Determination of the Root Locus 

In order to use the root locus as a design tool and to verify computer-
generated loci, it is very important to be able to sketch root loci. The 
control engineer can then quickly predict, for design purposes, the effect of 
an added pole, or even several of them, or can quickly confirm computer 
output in a qualitative sense. For this reason, it is important to understand 
the guidelines for sketching the loci and be able to plot numerous example 
loci by hand. The computer can be used to determine accurate loci and to 
establish exact values of the parameters. It is especially useful in computing 
the closed-loop pole sensitivity to those parameters because their values 
may be known only to a certain tolerance at the time of the design and 
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FIGURE 5.4 
Examples of Nonlinear Elements 

may be subject to drift over the life of the system. There are two basic 
approaches to machine computation of the root locus. 

In the first approach the root locus problem is formulated as a polynomial 
in the form a(s) + Kb(s) = 0. For a sequence of values of K varying from 
near to zero to a large value, the polynomial for its n roots is solved by any 
of the many available numerical techniques. An advantage of this method 
is that it computes all the roots for each value of K, guaranteeing that a 
specific value, if required, is also included. 

One of the disadvantages of the method is that the resulting root locations 
arc very unevenly distributed in the s-plane. For example, near a point of 
multiple roots the sensitivity of the root locations to the K -value is very 
great, and the roots just ''fly through" such points; the plots appear to be 
coarse, so it is easy to miss important features. (On the other hand, the 
method has the advantage that near a zero the root moves very slowly, 
since it takes an infinite value of the parameter to push the root all the way 
into the zero. 

A second disadvantage of this method is that the equation must be a 
polynomial. In cases of time delay, it involves a transcendental equation, 
hence an approximation such as the Pade method must be used to reduce 
the given problem to an equivalent polynomial. Such approximations limit 
the range of values for which the results are accurate, and checking the 
accuracy is difficult unless a means is available to solve the true equation 
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at critical points. A final disadvantage is that not many algorithms arc 
able to solve polynomials easily at points of multiple roots. This problem 
is related to great sensitivity of the roots to the parameter at these points, 
as mentioned earlier. A method related to factoring is possible when a 
state-variable formulation is available. 

The alternative to polynomial factoring is a method based on curve trac-
ing. It hinges on the fact that a point on the positive root locus is a point 
where the phase of G(s) is 180°. Thus, given a point on the locus at S 0 with 
gain K 0 , a circle of radius 8 around s0 can be drawn and the circle searched 
for a new point where the angle condition is met and the new gain is larger 
than K 0 • This method can be easily arranged to include a delay term such 
as e-.\s; the resulting points will be spaced 8 radians apart, a value that 
the designer can specify. 

A disadvantage of this method is that only one branch of the locus is 
generated at a time (although computer logic can be easily set up through 
each of the open-loop poles to produce a complete graph). A second disad-
vantage is that the designer needs to monitor the selection of 8 in order to 
ensure that the search for 180° converges on some points and avoid wasting 
too much time with a small value of 8 at less critical points. 

5.7.1 MATLAB 

The issues involved in using MATLAB to determine the root locus of a 
dynamic system can be summarized as follows: 

• Closed-loop poles 

• Plotting the root locus of a transfer function 

• Choosing a value of K from root locus 

• Closed-loop response 

• Key MATLAB commands used: cloop, rlocfind, rlocus, sgrid, step 

Open-loop system 
The following example illustrates the implementation for an open-loop 

system. 
nurn=/1 7}; 
den=conv(conv({1 0},(1 5j),conv([1 15},[1 20})); 
rlocus (nurn, den) 
axis([-22 3 -15 15)) 
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Choosing a value of K from the root locus 
The plot above shows all possible closed-loop pole locations for a pure 

proportional controller. Obviously not all of those closed-loop poles will sat-
isfy our design criteria. To determine what part of the locus is acceptable, 
the command sgrid( ~ ,wn) can be used to plot lines of constant damping 
ratio and natural frequency. Its two arguments are the damping ratio ~ 
and natural frequency Wn [these may be vectors if the objective is to look 
at a range of acceptable values]. In this problem, an overshoot less than 
5% (which means a damping ratio ~ of greater than 0. 7) and a rise time 
of 1 second (which means a natural frequency Wn greater than 1.8) are 
required. Enter in the MATLAB command window: 

~ = 0.7; 
Wn = 1.8; 
sgrid( (.w 11) 

From the plot above it can be seen that there is part of the root locus 
inside the desired region. So in this case only a proportional controller is 
required to move the poles to the desired region. The rlocfind command in 
MATLAB can be used to choose the desired poles on the locus: 

[kd,poles] = rlocfind(num, den) 
Closed-Loop Response 
In order to find the step response, the closed-loop transfer function has 

to be known. This can be compnted using the rules of block diagrams, or 
MATLAB can be used to implement the closed-loop transfer function as 

follows: 
(numcl, dencl} = cloop((kd) *num, den) 

5.8 Problems 
Problem 5.2 Two systems have the following plant gains 

3s- 4 
C(s) = -=----

82- 2s + 2 

G(s) = 
3s- 4 

(a) Obtain the root loci for the two systems. 
(b) Is there any value of contmller gain K that will stabilize either of 

these plants? 



390 Design and Analysis of Control Systems 

Problem 5.3 Consider a system with the following plant transfer function 
(where the controller gain K = 1). 

G(s)- s2+s+a 
- s(s + l)(s2 + s + 1.25)(s2 + s + 4.25) 

{a) Plot the root locus for the plant as a varies from 1.25 to 4.25. 
{b) Find the exact value of a for which the pair of poles which asymptot-

ically approach zero changes. 

Problem 5.4 Determine the system type for following unity feedback sys-
tems whose forward path transfer functions are given below. 

(a) 
K 

G(s) = (1 + s)(l + lOs)(l + 20s) 

{b) G(s) _ lO(s + 1) 
- s3 (s2 +5s+5) 

{c) G(s) _ 100 
- s3 (s + 2)2 

Problem 5.5 Determine the step and ramp error constants of unity feed-
back systems whose forward path transfer functions are given by: 

( ) G(s) _ 1000 
a - (1 + O.ls)(l +lOs) 

{b) 

(c) 

G(s) = K(l + 2s)(l + 4s) 
s2 (s2 + s + 1) 

G(s) - 100 
- s(s2 +lOs+ 100) 

Problem 5.6 The forward path transfer functions of unity feedback control 
systems are given below. 

{a) G(s) _ K(s + 4) 
- s(s2 + 4s + 4)(s + 5)(s + 6) 

{b) K 
G(s) = s(s+2)(s'+5)(s+10) 

{c) G(s) _ K(s2 + 2s + 10) 
- s(s + 5)(s + 10) 

{d) G(s) - K(s2 + 4) 
- (s + 2)2(s + 5)(s + 6) 

Construct the root loci for K :2: 0 . 



Root Locus Design Methods 391 

Problem 5. 7 The characteristic equation of the liquid level control system 
is written as 

0.006s(s + 12.5)(As + K) + 250N = 0. 

(a) For A = K = 5, constrztct the root loci of the characteristic equation 
as N vaTics from 0 to oo. 

(b) FoT N = 10 and K = const.ruct the mot loci of the characteTistic 
equation joT A 2: 0. 

(c) For A= 50 and N = 20, construct root loci forK 2: 0. 

Problem 5.8 The block diagram of a control system with feedback is shown 
in following rhagram. 

L E(s) 0---+®-- 1 Y(s) 

s2 (s+5) -

I~ s I I I 

(a) Construct the root loci of the characteristic equation forK 2 0 when 
Kt = 0. 

(b) Set K = 10, construct the root loci of the characteristic equation for 
Kt 2: 0. 



http://taylorandfrancis.com


Chapter 6 

Frequency-Response Design 
Metho 

6.1 Introduction 
In most of the work in previous chapters the input signals used were func-

tions such as an impulse, a step, and a ramp function. In this chapter, the 
steady state response of a system to a sinusoidal input signal (sinusoid) is 
considered. lt will be observed that the response of a linear time-invariant 
system to a sinusoidal input signal is an output sinusoidal signal at the same 
frequency as the input. However, the magnitude and phase of the output 
signal differ from those of the input sinusoidal signal, and the amount of 
difference is a function of the input frequency. Hence, the frequency re-
sponse of a system is defined as the steady state response of the system to 
a sinusoidal input signal. The sinusoid is a unique input signal, and the 
resulting output signal for a linear system is sinusoidal in the steady state. 

Consequently, the objective of the chapter is to investigate the steady 
state response of the system to sinusoidal inputs as the frequency varies. 
The design offeedback control systems in industry is probably accomplished 
using frequency-response methods more often than any other. Frequency-
response design is popular primarily because it provides good designs in the 
face of uncertainty in the plant model. For example, for systems with poorly 
known or changing high-frequency re.sonances, their feedback compensation 
can be modified to alleviate the effects of those uncertainties. This modifi-
cation is carried out more easily using frequency-response design than any 
other method. Another advantage of using frequency response is the ease 
with which experimental information can be used for design purposes. Raw 
measurements of the output amplitude and phase of a plant undergoing a si-
nusoidal input excitation are sufficient to design a suitable feedback control 
system. No intermediate processing of the data (such as finding poles and 
zeros or determining system matrices) is required to arrive at the system 
model. The wide availability of computers has rendered this advantage less 

393 
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important now than it was years ago; however, for relatively simple systems, 
frequency response is often still the most cost effective design method. 

Hence, the frequency-response design method offers a practical and im-
portant alternative approach to the analysis and design of control systems. 
The frequency response of a system is defined as the steady state response 
of the system to a sinusoidal input signal. The sinusoid is a unique input 
signal, and the resulting output signal for a linear system, as well as signals 
throughout the system, is sinusoidal in the steady state; it differs from the 
input waveform only in amplitude and phase angle. The transfer function 
G(8) is analyzed when 8 = jw and methods for graphically displaying the 
complex number G(jw) as w varies are developed. The main techniques 
covered include Bode plots, polar plots and Nyquist plots. Time-domain 
performance measures are developed in terms of the frequency response and 
then applied in system performance evaluation. 

6.1.1 Magnitude and Phase Angle 

The frequency response of a system with a general transfer function G(8) 
is defined as the steady state response of the system to a sinusoidal input 
signal u(t). The sinusoid is a unique input signal with amplitude U0 and 
frequency w, and the resulting output signal y(t) is also sinusoidal and it 
differs from the input waveform only in amplitude and phase angle. 

u(t) = U0 sin wt (6.1) 

( ) Uow u 8 = 2 2" 8 +w 
(6.2) 

From the definition of a transfer function, the output signal y(t) can be 
established as shown below 

G( ) = Y(8) 
8 U(8) 

Y(8) = G(8)U(8) 

= G( 8 ) Uaw 
82 +w2 

y(t) = _c-1 [c(8) 2Uow 2] 
s +w 

y(t) = AU0 sin(wt + ¢), (6.3) 

where A and ¢ are the magnitude and phase angle of the transfer function 
G(8). Thus, the sinusoidal output y(t) differs from the input u(t) in ampli-
tude by a constant factor A, and in phase by angle </J. To establish A and 
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¢the substitution of s = jw is effected in G(s) such that 

G(jw) = G(s)is=jw 

= ReG(jw) + jlmG(jw) 

= X(w) + jY(w) 

A is the magnitude of the transfer function G(jw) 

A IG(jw)l 

= VfReG(jw)] 2 + [ImG(jw)]2 

= jX(w) 2 + Y(w) 2 . 

¢is the phase angle of the function G(jw) 

¢=argG(jw) 

= LG(jw) 

_ , _ 1 [ImG(jw)J 
- tan Re G(jw) 

= tan- 1 [~~:~ J . 
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The term arg G(jw) is the shorthand form of the expression, "the argument 
of G(jw)" which means the phase angle of the complex function G(.jw). 

Example 6.1 Find the rnagnit1Ide and phase angle of the transfer function 

G(s)=3s~4· 
Solution 6.1 The solution proceeds as follows: 

5 
G(jw) = 3(.jw) + 4 

5(4-j3w) 
(4 + j3w)(4- j3w) 
20- j15w 
(16 + 9w2 ) 

20 -j15w 
(16 + 9w2 ) + (16 ~ 9w2 ) 

==? G(jw) = X(w) + jY(w) 
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Therefore, the magnitude is given by 

A= IG(jw)i 

= JX2 (w) + Y 2 (w) 

400 225w2 

(16 + 9w2 ) 2 + (16 + 9~.<.:2)2 

(16 : 9w2 ) J 400 + 225w2 

5 

The phaiw angle is given by 

¢ = argG(jw) 

_ 1 Y(w) 
=tan X(w) 

( -15w) = tan- 1 2Q 

_ 1 (3w) =-tan 4 . 

6.1.2 Combining Magnitudes and Phase Angles 

Consider a transfer function that is composed of five transfer functions 
such that, 

The overall magnitude and phase angle can be expressed in terms of the 
individual magnitudes and phase angles. The analysis is carried out as 
follows: 
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Therefore, the composite magnitude and phase angle are given by 

A= IG1(jw)IIG2(jw)l 
IG3(jw)IIG4(jw) IIG5(.jw) I 

(6.4) 

(6.5) 

This means that the composite magnitude and phase angle can be obtained 
from the magnitudes and phase angles of the individual transfer functions 
that constitute the composite transfer function. Equations 6.4 and 6.5 can 
be generalized for a transfer function with m multiplier transfer fnnctions 
and n divisor transfer functions such that 

I1j=1 GJ(s) 
G( s) = rrn G ( ) ' 

i=l 7 ' s 

where the product symbol II is defined by the expression 

(6.6) 

The magnitude and phase angle are obtained by using the substitution 
s = jw in Equation 6.6. 

(6.7) 
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m n 

==} ¢ = E ¢j- I:: ¢i· (6.8) 
j=1 i=l 

These formulae in Equations 6.7 and 6.8 allow the computation of the 
magnitude and phase angle of a transfer function without first expressing 
the transfer function in terms of a real part and an imaginary part as done 
in Example 6.1. Applying Equations 6.7 and 6.8 in Example 6.1 simplifies 
the solution, 

. 5 
G(Jw) = 3(jw) + 4 

A= IG1 (jw)l = 151 
IG2(jw)l IJ3w + 41 

5 

V16 + 9w2 

¢ = argG1(jw)- argG2(jw) 

= ¢1-¢2 

1 (0) 1 (3w) =tan- 5 -tan- 4 

__ 1 (3w) =-tan 4 . 

Example 6.2 Consider the RC filter cin:uit shown in Figur·e 6.1. 

FIGURE 6.1 
A Simple RC Filter 

Find the magnitude and phase angle of the circuit's transfer function, 
which is given by 

G(s) = i~:;. 
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Solution 6.2 By using the KCL and KVL, expressions for the i'nput and 
outp·ut voltages are determined. 

Tak·ing Laplace transforms of the two equations leads to 

V1 ( s) = I ( s) [ R + s~] 

V2(s) = I(s) [s~~]. 
Hence. the transfer function is given by 

I(s) [fc,] 
I(s)[R+ 8~] 

1 

1 +sRC 
. 1 

===? G(Jw) = 1 + jwRC 

The magnitude and phase angle are obtained us·ing Equations 6. 7 and 6.8, 

A= \GI(jw)\ = \1\ 
\G2(jw)! \1 + jwRC\ 

1 
)1 + (wRC)2 

¢ = ~&J - cjJ2 

= tan-1 (~) -tan-1 (w~C) 

= - tan- 1 (wRC). 

Example 6.3 Find the magnitude and phase angle of the transfer function 

G(s) = s(2s + 1) 
(s + 1)(2s + 3)(s2 + 2s + 10) · 



400 Design and Analysis of Control Systems 

Solution 6.3 The magnitude and phase angles are computed by using Equa-
tions 6. 7 and 6.8 

O(" ) jw(2jw + 1) 
JW = (jw + 1)(2jw + 3)((jw)2 + 2jw + 10) 

01(jw)02(jw) 

A= [Ch (jw)[[02(jw)[ 
[G3 (.jw) [[04 (jw) [[05 (jw) I 

[jw[[(2jw + 1)[ 
[(jw + 1)[[(2jw + 3)[[((jw)2 + 2jw + 10)[ 

wJ(4w2 + 1) 

_ 1 (w) _1 (2w) _1 (w\ . _1 (2w) = tan 0 + tan T - tan l) - tan 3 

( 2w ) - tan- 1 
2 . 

10 -w 

6.2 Bode Plots: The Principles 

In this section the principles behind Bode plots are introduced on the 
foundation of the previous discussion on polar plots. The advantages of 
Bode plots and the techniques used to draw them are then presented. 

6.2.1 Background 

It is staHclanl practice to measure power gain in decibels, that is, units 
of one-tenth of a bel such that 

[H(jw)[db = 10log10 (;~) · 
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Power can be expressed in terms of voltage and resistance, 

v2 
p =-

R 

( v? v?) 
===? jH(jw)idb = 10log10 -R /R 
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It is within this context that the Bode magnitude or logarithmic magnitude 
NJ is defined for any transfer function G ( s). 

lvf = IG(jw)Ltl! = 20log10 IG(jw)l 
= 20log10 A. 

The Bode plots for a transfer function consist of two figures: A plot of the 
logarithmic magnitude M with respect to frequency w, and the phase angle 
¢ with respect to frequency w. The horizontal scale w is logarithmically 
calibrated. The logarithmic plots are used to simplify the determination 
of graphical portrayal of the system frequency response. It is important 
to note that logarithmic scales are used because they considerably simplify 
the construction, manipulation, and interpretation of the Bode plots. The 
;oct of Bode equations (M and ¢) for the RC filter circuit in Example 2 are 
given by 

NI = 20log10 IG(jw)l 

1 
= 20 log 10 --;==:====~ y'i+(wRC) 2 

= 20log10 1- 20log10 )1 + (wRC) 2 

= -20log10 )1 + (wRC)2 

¢ =- tan- 1 (wRC). 

(6.9) 

(6.10) 

The next sections deal with techniques that are employed to draw Bode 
plots from equations such as Equations 6.9 and 6.10. 

6.2.2 Advantages of Bode Plots 

A Bode plot gives the magnitude and phase of il system in response to 
a sinusoidal input for a range of frequencies. Each point on the Bode plot 
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represents the system response for a given frequency input. Such plots can 
be used to establish system stability (by finding stability margins), study 
speed of response and establish how different vibrations affect a control 
system. 

• Bode plots of systems in series or parallel can be simply added to 
produce the composite Bode plots. 

• For reciprocal factors, the magnitude and phase need only be changed 
in sign. 

• The phase-gain relationship is given in terms of logarithms of phase 
and gain. 

• Low- to high-frequency system behavior can be displayed on a single 
Bode plot. 

• Gain crossover, phase crossover, gain margin, and phase margin are 
easily determined from the Bode plots. 

• Bode plots can be determined experimentally without explicit knowl-
edge of the transfer function. 

• For design purposes, the effects of adding controllers and their pa-
rameters are easily visualized on the Bode plot. 

• Dynamic compensator design can be based entirely on Bode plots. 

• Bode plots can be used to stabilize systems by changing system gains. 

• Bode plots can also be used to study the impact of non-frequency 
inputs. 

It is essential for the control systems engineer to be able to hand-plot 
frequency responses. This technique enables the engineer to analyze simple 
systems and also to check computer results for more complicated exam-
ples. Approximations can be used to quickly sketch the frequency response 
and deduce stability as well as determine the form of the needed dynamic 
compensations. Hand plotting is also useful in the interpretation of exper-
imentally generated frequency-response data. 
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6.2.3 Bode Plot Techniques 

A general transfer function can be expressed in terms of a constant, zero 
factors and pole factors as follows: 

IT"?:_ 1 (s+z·) 
G(s) = K ~; J 

Ili=l (s +Pi) 

lF11 (jw + z ) .. G(jw) = ]( J=l J = Ae710 

IIf=l (jw +Pi) ' 
(6.11) 

where A is the magnitude given by 

and ¢ is the phase angle. 

m n l 
¢ = ~arg(jw+zj) + ~arg ( ·w ·). 

j=l i=l J + p, 

Expressing the magnitude A in decibels gives the Do de magnitude }\;f, 

l\11 = IG(jw)ldb 

= 20log10 A 

Hence, the magnitude in decibels and phase angle for any transfer function 
can be obtained as follows: 

m n l 
¢ = L arg(jw + Zj) + L arg (" )" 

j=l i.=l JW +Pi 
( 6.13) 

From these two equations it can be deduced thaL any transfer function 
whose Bode plots are of interest can be first expressed in terms of a con-
stant, zero factors, and pole factors. The Bode plots of the constant and 



404 Design and Analysis of Control Systems 

the individual factors are then drawn separately and then simply added 
to produce the composite Bode plots ( ¢ and M) for the entire transfer 
function. There are six unique forms that these zero and pole factors can 
take: a simple (first-order) zero factor, a simple (first-order) pole factor, an 
integrator factor, a derivative factor, a complex (second-order) pole factor 
and a complex (second-order) zero factor. The form of a simple zero factor 
(with a real zero at s = - z1) is established as follows: 

G(s) (s + z1) 

s 
z (1 +-) 

J Zj 

==?- z1 (a constant) and ( 1 + ~) (a simple zero factor). 

Similarly, a simple pole factor (with a real pole at s = -pi) takes the form 

G(s) 1 

s 
Pi(1+-) 

Pi 
1 1 

==?- Pi (a constant) and --,(~1-+-;-J' (a simple pole factor). 

The integrator factor (a pole at s = 0) is of the form 1/s and derivative 
factor (a zero at s = 0) takes the form of s. A complex (second-order) pole 
factor occurs when there are two complex poles, -p1 and -p2, (a conjugate 
pair such that p1 = a + j b and p2 = a - j b). This can be formulated as 
follows: 

G(s) 
1 1 

(s +(a+ jb)) (s +(a- jb)) 

1 

s2 +2as+(a2+b2) 

1 
==?- (expressing result in standard form) 

s2 + 2~wns + w~ 
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Therefore, G(8) 
1 

1 . =* - 2 (a constant gam) and 
wn 
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(6.14) 

1 
(a complex pole factor). 

A complex (second-order) zero factor occurs when there are two complex 
zeros -z1 and -z2 , (a conjugate pair such that z1 =a+ jb and z2 =a- jb). 

G(8) (s +(a+ jb))(8 +(a- jb)) 

8 2 + 2as + (a2 + b2 ) 

===} 8 2 + 2~Wn8 + w; 

=* w~ (a constant gain) and 

[ ( ) ( ) 2] 8 8 
1+2~ - + -

Wn Wn 
(a complex zero factor). 

(6.15) 

These are the six unique zero and pole factors that a transfer function 
can be broken into. Hence, including the constant function, there are seven 
exhaustive elementary functions that one has to be able to draw in order 
to be in a position to establish the Bode plots of any transfer function. 
An advantage of Bode representation is that for reciprocal factors the log-
magnitude and phase need only be changed in sign. Hence, log-magnitude 
and phase of the simple pole factor are the negatives of those of simple 
zero factor, the log-magnitude ancl phase for the integrator factor are the 
negatives of those of the derivative factor, and the Jog-magnitude ancl phase 
of the complex pole factor are negatives of those of the complex zero factor. 
Hence, a careful study and construction of Bode plots for the following 
four classes of factors is sufficient and exhaustive. 

6.2.3.1 Four Classes of Basic Factors 

• Constant Factors 
1 

G(8) = K and G(8) = K. 
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• Simple (First-Order) Zero and Pole Factors 

s 1 
G(s) = 1 + Zj and G(s) = --,(,.--1_+_;_,.,.--r 

• Integrator and Derivative Factors 

1 G(s) =- and G(s) = s. 
s 

• Complex (Second-Order) Pole and Zero Factors 

The approach is to take any given transfer function and express it in terms 
of the basic factors. The next step is to draw the Bode plots corresponding 
to these functions using the method of asymptotes, then add them up to 
get the Bode plot for the whole system. 

6.3 Constant Factors (Gain) 
The simplest factor is a positive constant function (greater or less than 

one) depicted by 

1 
G(s) = K or G(s) = K 

1 
===? G(jw) = K or G(jw) = K' 

6.3.1 Magnitude 
The magnitude is expressed by 

M = 20log10 IG(jw)l 

= 20 log10 IKI. 
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Similarly for the reciprocal ~, 

For example, 

M = 20log10 IG(.iw)l 

1 
= 20 log1o I K I 

= -20log10 IKI. 

G(s) = 10 

G(jw) = 10 

M = 20log10 10 = 20 

G(s) = 110 

M = 20 log10 ( 1
1
0 ) 

= 0 - 20 log 10 = -20 

6.3.2 Phase Angle 

407 

The phase angles of constant factors K and ~ are obtained as follovvs: 

cj; = argK 

=0 

1 
¢ = arg K 

-1(0) -1(0) =tan l -tan K 

= 0. 

The magnitudes and phase angles can then be plotted as shown in Figure 
6.2 and Figure 6.3. If K is negative, the bode magnitude is the same as that 
for positive K, but the phase angle is -180°. It is important to note that 
-180° and 180° represent the same angle. The choice of -180 is simply 
a convention adopted in most literature and computer packages ~mch as 
IviATLAB. 
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FIGURE 6.2 
Bode Plots for a Constant Factor G(s) = K = 10 

6.4 A Simple Zero Factor 

In the simple zero factor form established above, let the zero at s = -z.i 
be represented by s = -we, where We is called the cut-off, breakaway or 
corner frequency. This is the frequency at which two Bode asymptotes meet, 
and its importance will become clear as the Bode plots are constructed. 

s 
G(s) = 1 +-

We 

. jw 
==? G(Jw) = 1 + --. 

We 
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-20 logK 

/ 

10° 10 1 

ro [ rad/ sec] 

10° 10 1 
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1 1 
Bode Plots for a Constant Factor G(s) = K = 10 

6.4.1 Magnitude 

For low frequencies, that is, w «We, it follows that 

===?- M ~ 20 log10 Vl 
===?- M ~ 0. 

409 
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Hence, the asymptote for w « We is lvf = 0. For high frequencies, that is, 
w » We, the expression for the magnitude can be simplified. 

===} M ~ 20log1o (:c) (because (:e) 2 » 1 for w »We) 

=} l'vl ~ 20 log10 w- 20 log10 We ~ 20 log 10 w 

===}gradient of M = 20db/decade and M = 0 at w =We. 

Hence, the asymptote for w » We is M = 20 log10 w. At the cut-off fre-
quency ( w = we) the two asymptotes ( 11' « We and w » we) meet with the 
value of the magnitude being M = 0. ~With the two asymptotes (w «We 

and w » We) established including the value of M at the cut-off frequency 
(w =we), an asymptote Bode plot of M can be drawn. From the asymp-
tote curve, the actual plot can then be sketched, as illustrated in Figure 
6.4. 

6.4.2 Phase Angle 

¢ = tan- 1 (~11) 
We 

= tan- 1 (;J. 
Evaluating this expression at limit frequencies leads to 

w 0===?(/J=O 
w --+ oo -? ¢ --+ 90° 

At the cut-off frequency, the phase angle is 

¢=tan- 1 (::) 

= tan- 1 1 

= 45°. 

(6.16) 

(6.17) 

(6.18) 

With the limits in Equation 6.17 and 6.18 and the cut-oil phase angle 
( 45°), the phase angle plot can be sketched as shown in Figure 6.4 using 
the method of asymptotes. For any simple zero factor the only parameter 
that needs to be specified is the breakaway frequency (e.g., We= 10). 
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FIGURE 6.4 

Bode Plots for a Simple Zero Factor G(s) = 1 + ~ 
We 

6.5 A Simple Pole Factor 

In the simple pole factor form established above let the pole at s = -pi 
be represented by s = -We. 

1 
G(s) = 8 

1+-

1 
=? G(jw) = . 

1 + JW 
We 
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6.5.1 Magnitude 

1 
M = 20 log10 --;====== 

( 1 + c~:r) 

= -20log10 (1 + (:J 2) 

= - the magnitude for the zero factor ( 1 + ~e) . 
l<or low frequencies, that is, w « We 

( 1 + ( ·w11;c··) 2 ) M = -20 log10 . 

==? M ~ -20log10 VI 
==} M~o. 

Hence, the asymptote for w « We is M = 0. For high frequencies w » We 

(10) ==? M;::::: -20log10 -
We (because (.;J 2 » 1 for w » we) 

==} lvf ::o:; -20log10 w + 20log 10 We ::o:; -20log10 w 

==}gradient of j\!J = -20dbjdecade and M = 0 at w =We. 

(6.19) 

Hence, the asymptote for w » We is NI = -20 log10 w. At the breakaway 
frequency ( w = we) the two asymptotes ( w « We and w » we) meet 
with the value of the magnitude being (M = 0). With the two asymptotes 
( w «We and w »we) established including the value of M at the cut-ofi 
frequency, an asymptote Bode plot of M can be drawn. From the asymptote 
curve the actual plot can then be sketched as illustrated in Figure 6.5. 
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FIGURE 6.5 

Bode Plots for a Simple Pole Factor G(s) = 1/ ( 1 + ~J 

6.5.2 Phase Angle 

¢ = tan- 1 (0/1)- tan- 1 ( ;/1) 

-1 ( w) ===? ¢ = -tan We 

===? ¢ = - Phase angle for 

Taking limits in this expression leads to 

w = 0==:::?¢=0 

w -----+ oo ===? ¢ -----+ -90°. 

413 

(6.20) 

(6.21) 

(6.22) 
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At the cut-off frequency the phase angle is 

rl- -1 (We) 'I'= -tan -
We 

= -tan-1 1 

With the limits in Equation 6.21 and 6.22 and the breakaway phase angle 
( -45°), the phase angle plot can be sketched as shown in Figure 6.5. Note 
that for any simple pole factor, the only parameter that needs to be specified 
is the breakaway frequency (e.g., We = 10). The Bode plots in Figure 6.5 
are simply the negatives of those for the simple zero factor shown in Figure 
6.4, thus confirming the Bode property for reciprocal factors. A practical 
example of a system containing a simple pole factor is the RC filter circuit 
shown in Example 6.2. Its Bode plots will be similar to those in Figure 6.5 

. 1 
w1th a cut-off frequency We = RC · 

6.6 An Integrator Factor 

6.6.1 Magnitude 

1 G(s) =-
s 

. 1 
=? G(Jw) = -.. 

M 
1 

20log10 -
w 

-20log10 w 

JW 

==}gradient of M = -20db/dccade. 

To plot this straight line one point needs to be located, for example, w = 
1 ==} M = 0. With one point and a gradient the magnitude plot can be 
drawn as shown in Figure 6.6. 
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FIGURE 6.6 

1 
Bode Plots for an Integrator Factor G(s) =-

s 

6.6.2 Phase Angle 

¢ tan~ 1 (0/1)- tan- 1 (w/O) 

- tau~ 1 oo 

415 

(6.23) 

The Bode plot for the integrator can thus be drawn as shown in Figure 6.6. 
There is no need for asymptotes. For a cascade of integrators such that 

1 
G(s) = k' s 
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the magnitude and phase are obtained as in the case of a single integrator. 

M 
1 

20 log10 I (jw )k I 
-20klog10 w 

===?-gradient of M = -20k db/decade 

1 
arg (jw)k 

= tan- 1 (0/1)- ktan- 1 (w/O). 

-ktan- 1 oo 

6. 7 A Derivative Factor 

The magnitude and phase for the derivative factor are obtained in the 
same way as for the integrator factor and they are in fact the negatives of 
the magnitude and phase for the integral factor, respectively. 

6.7.1 Magnitude 

G(s) = s 
::::;. G(jw) =jw 

M = 20log10 w 

===?-gradient of M = 20dbjdecade. 

In order to plot this straight line one point has to be located, for example, 
w = 1 ===?- M = 0. With one point and a gradient, the magnitude plot can 
be drawn as shown in Figure 6.7. 
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FIGURE 6.7 
Bode Plots for a Derivative Factor G(s) = s 

6. 7.2 Phase Angle 

¢ = tan- 1 (w/0) 

= tan- 1 oo 

===}¢=goo (6.24) 

The Bode plot for the derivative can thus be drawn as shown in Figure 
6.7. There is no need for asymptotes and the plots are the negatives of the 
integrator plots. For a cascade of derivative factors such that 

the magnitude and phase are obtained as in the case of a single derivative 
factor. 

M = 20 log10 wk 

= 20klog10 w 

===} gradient of lvl = 20k db/ decade 
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¢ = ktan- 1(w/O) 

= ktan- 1 oo 

==? ¢ = 90k0 . 

6.8 A Complex Pole Factor 
As has already been shown, the complex pole factor is established by 

considering the general transfer function of a standard second-order system, 

H(s)- b(s) 
- s 2 + 2~wns + w~ 

such that the complex pole factor is given by 

1 
G(s) = 2 

[1 + 2~(:J + (~J l 
. 1 

==? G(Jw) = 0 

[1 + 2~ (jw) + (JW) ~] 
Wn Wn 

6.8.1 Magnitude 

M = 20 log1o I [ 2]1 
1 + 2~(::) + (~:) 

1 

= -20log10 I [1 + 2~(~) + (~Yl 

-2ologl0 (1- :~Y + (2~;ny 
For low frequencies, i.e., w « Wn the magnitude becomes 

M ~ -20log10 Vl 
~o 

(6.25) 

( 6.26) 
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FIGURE 6.8 
A Complex Pole Factor with Various Values of~ (0.1, 0.3, 1.0) 

Hence, the asymptote for w « Wn isM= 0. For high frequencies w » Wn, 

==} lvf ~ -40 log10 w + 40 log10 Wn (6.27) 

==}gradient of M = -40dbjdecade and M = 0 at w =We. 

Hence, the asymptote for w » Wn isM= -40log10 w. At the breakaway 
frequency ( w = wn) the two asymptotes ( w « Wn and w » wn) meet with 
the value of the magnitude being (M = 0). The two asymptotes (w « Wn 
and w » wn) are independent of the value of the damping ratio~ . In the 
actual Bode plot derived from the asymptotes, near the frequency ( w = wn) 
a resonant peak Mpeak occurs, as can be expected from Equation 6.25. The 
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resonant peak is of the form 

Mpeak = -20 log10 2,;. 

This clearly shows that the damping ratio determines the magnitude of the 
resonant peak There are large peaks for small values of,;. The magnitude 
Bode plots are shown in Figure 6.8 for various values of,;. For example for 
,; = 0.1 the magnitude plot has a resonant peak at 

Mpeak = -20logl0 (2 X 0.1) 

= 13.98. 

6.8.2 Phase Angle 

( 12~ :::n: ) . ¢ = -tan- 1 

n 

(6.28) 

This means the phase angle is a function of both w and ~. Analyzing this 
expression leads to 

w = 0 ====} ¢ = 0° 

W = Wn ===='?- ¢ = -90° 

w = 00 ====} ¢ = -180°. 

The phase angle curve is skew symmetric about the inflection point, where 
¢ = -90°, with 0° and -180° as asymptotes as shown in Figure 6.8. This 
figure shows the phase Bode plots for various values of ( 

6.9 A Complex Zero Factor 

The Bode plots for a complex zero factor are obtained by simply reversing 
the sign of the magnitude M and phase angle ¢ for the complex pole factor. 
If necessary, they can also be derived from first principles and analyzed just 
as done for the complex pole factor. 



Frequency Response Design Methods 421 

6.9.1 Magnitude 

lvi = 20 log10 (6.29) 

6.9.2 Phase Angle 

( 
w ) 

2~-

¢ = tan-1 w,;z . 
1--

w2 n 

(6.30) 

6.10 Drawing Bode Plots 

Given a transfer function, express and break it up into the basic functions. 
Identify the cut-off frequencies We or Wn and draw the basic Bode plots 
corresponding to these functions using the method of asymptotes, then add 
them up to get the Bode plot for the whole system. 

Example 6.4 Consider the following system transfer- function, 

G s = 2s + 2 
( ) s2 +lOs· 

(a) Show that the function can be broken into constant, zero, pole, and 
integral factors. 

(b) Obtain the overall system Bode plots. 

Solution 6.4 (a) The transfer- function can be broken into basic transfer 
functions as follows: 

G(s) = 

8(1+10) 

1 
~ 5, (l+s), 
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The cut-oJf frequency for the zero function is given b:IJ We = 1 and that for 
the pole function by We = 10. 

(b) The four basic plots are then sepamtely drawn as discussed above, 
and then added together to produce the composite Bode plots. The results 
are shown in the following d·ia.umms: 

Bode Diagrams 
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Bode Diagrams 
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Bode Diagrams 

iii' 
:!:!. ., -10 
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Bode Plots for the Entire Transfer Function (2s + 2)/{s(s + 10)} 

Example 6.5 Consider the follow'ing transfer function, 

1 
G ( s) = """'"s2::-+-10_s_+_10_0 · 

(a) Express the transfer function in terms of a constant factoT and a 
complex pole factor. 

(b) Draw the Bode plots for the two factors. 

(c) Derive the overall system Bode plots. 

Solution 6.5 (a) The starting point is exP'ressing the transfer function in 
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terms of basic factors. This is achieved as follows: 

G(s) = 

= 

G(jw) 

1 

s2 +lOs+ 100 

1 

wo [1 + 1so + Csor] 
1 

[1 jw (jw) 2
] 

100 + 10 + 10 

1 

(a constant gain) and 

1 
(a complex pole factor) 

where Wn = 10 and e = 0.5 

===? Mpeak = -20 log10 2e = 0. 

{b), (c) The two functions, a constant gain, and a complex pole factor are 
then sketched and added together. The results are shown in the following 
diagrams: 
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Bode Diagrams 
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Example 6.6 (a) Show that the following transfer function can be broken 
into zero, pole, integrator, and complex factors. 

G(s) _ 1000(1 + s) 
- s(s + 2)(s2 + 8s + 64) 

{b) Sketch the Bode plots of these basic factors. 
(c) Deduce the overall Bode plots for the system. 

Solution 6.6 (a) The transfer function can be expressed in terms of basic 
factors as follows: 

G(s) _ 1000(1 + s) 
- s(s + 2)(s2 + 8s + 64) 

1000 
--(1 + s) 
2 X 64 

s s s 
s(1 + 2)[1 + 8 + (8)2] 

125 
=t 16' 

125 
16(1 + s) 

1 1 1 
(1 + s), s ' ' s s · 

(1+2) s 1+8+(8)2 

Thus there are five basic plots. The cut-off freq11.ency for- the zero factor is 
given We = 1 and that for the pole factor by We= 2. For the comple:r pole, 
the natural frequency Wn and the damping ratio ~ aTe found by comparing 
it to the standard form, i.e. 

1 

. (. )2 JW JW 
1+-+ -

8 8 

===} Wn = 8 and ~ = 0.5 

===} Mpeak = -20 loglO 2~ = 0. 
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(b), (c) The five basic plots can now be drawn separately and then added to 
produce the composite Bode plots. The results are shown in the following 
diagrams: 

Bode Diagrams 

Frequency (rad/sec) 

Bode Plots for the Constant Factor 125/16 



Frequency Response Design Methods 

'1 15 

10~ 
I 

Bode Diagrams 

. //~ ••.• • • •• ..•.. . .. . . •• .. .. •.. ; 

:t 
•. . /// . .... .. . I 

~ .................. J 
a oF. 
sol- · 
40 

Frequency (rad/sec) 

Bode Plots for the Zero Factor ( 1 + s) 

Bode Diagrams 

01 

-l~. 

Frequency (rad/sec) 

Bode Plots for the Pole Factor 1/(1 + s/2) 

101 

431 



432 Design and Analysis of Control Systems 

Bode Diagrams 
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Bode Plots for the Integrator Factor 1/ s 

Bode Diagrams 
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Bode Plots for the Complex Pole Factor 1/{1 + s/8 + (s/8) 2 } 
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Solution 6. 7 These examples illustrate the techniques of hand drawing 
Bode ploLs. 

6.11 Nonminimum Phase Systems 

A nonminimum phase system has at least one zero in the right-hand plane 
(RHP). Such systems arise when the system includes a nonminimum phase 
element or when there is an unstable minor loop. Consider two transfer 
functions that have the same structure except that one system has a zero 

1 1 
at - while the other has a zero at -- such that 

Wz Wz 

s 
1+-

G1(s) = V:,z, 
1+-

Wp 

6.11.1 Magnitude and Phase 

s s 
0 <- < -. 

- Wz - Wp 

The two systems have the same magnitude (M1 = M2 ) but different 
phase angles (¢1 and ¢2 ). The two complex quantities G1 (jw) and G2 (jw) 
differ by a factor 

G(jtu) = Gz(jw) 
· G1(jw) 

1- jw 

The magnitude of this factor is always unity while its phase angle is given 
by 

¢ ¢z- cP1 
= argG(jw) 

tan- 1 (-~:) - tan- 1 ( ~:) 

-2 tan- 1 ( ~~) 
===? ¢ varies from 0 to 180° as w varies from 0 to oo. 
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This is the difference between the phase angles ¢ 1 and ¢ 2 . The Bode plots 
1 

for the two systems G1 (s) and G2 (s) are given in Figure 6.9, where-= 
Wz 

1 1 1 
-and-=-. 
100 Wp 10 

Bode Diagrams 
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Cll .s::: 
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FIGURE 6.9 
The Effect of a Non-Minimum Phase System: Bode Plots ofG1 (s) 
and G2(s) 

Nonminimum phase systems arise in two different ways. One way is 
simply when a system includes a nonminimurn phase element or elements. 
The other situation may arise in the case where a minor loop is unstable. 
Nonminirnum phase systems arc slow in response because of their faulty 
behavior at the start of response. In most practical systems excessive phase 
lag should be carefully avoided. In particular in system design where speed 
of response is of primary importance nonminimum phase elements should 
be avoided. 
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6.12 Time Delay (Transport Lag) 

The time delay function or transport lag is a type of nonminimum phase 
system that has an excessive phase lag with no attenuation at high fre-
quencies. Such transport delays exist in thermal, hydraulic, and pneumatic 
systems. For example, when a tap is turned on at one end of a long hose-
pipe, it takes some time before the water appears aL the far end. Also, 
when the feed to a conveyor belt is changed, it takes some time for the 
change to be observed at the other encl. A pure time delay function can 
be modeled by considering a general system j(t) delayed by timeT, such 
that the system is represented by f(t- T). Taking Laplace transforms of 
this function leads to 

.C f(t- T) = e-sTF(s). 

Hence, the Laplace transform of a pure time delay is given by 

G(s) =e-sT. 

In order to deal with the time delay function, the Pade approximation was 
required in root locus analysis, 

G(s) =e-sT 

e-s1f 1 _ sT 
--~--2-

s:f;. - 1 + sT · e - 2 
(6.31) 

In frequency-response methods (Bode and Nyquist) an exact analytois of the 
delay function is possible. The frequency response of the delay is given by 
the magnitude and phase of G(jw). 

G(jw) = e-sTis=jw = e-jwT 

= cosjwT- sinjwT (from Euler's equation). 

6.12.1 Magnitude 

The magnitude is expressed by 

M = 20log10 IG(.jw)l 

= 20 log10 I cos2 (jwT) + sin2 (jwT) I 
= 20log 1 

= 0. 
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6.12.2 Phase Angle 

The phase angle of a time delay function is obtained as follows: 

¢ = arg G(jw) 

= tan_ 1 (-sinjwT) 
cosjwT 

= -wT (radians) 

= -57.3wT (degrees). 
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This means the phase angle varies linearly with the frequency w. The 
phase angle (¢ = -wT) is shown in Figure 6.10. It is important to note 
that the curve for the phase angle is not a linear curve because it is being 
plotted with respect to log w. 
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6.13 Bode Plots Using MAT LAB 

Bode plots can be drawn using MATLAB software. The key command 
is "bode(.)" and it is applied to the system transfer function model or the 
state-variable matrix model. A few sample algorithms are presented here 
to illustrate the procedure involved. 

6.13.1 Sample Algorithms 

6.13.1.1 A Single Plot 

Consider the transfer function 

num=[2 3 0}; 
den=[1 12 7 11}; 
bode{num,den) 

6.13.1.2 Several plots on the same curve 

Consider the transfer function 

num1={1}; 
den1 =[1 00}; 
num2=[1}; · 
den2=[1/100 1/10 1}; 
nwn3={1}; 
den8={1 0}; 
sys1 =tf(num1,den1); 
sys2=if(nwn2, den2); 
sys8=U(nwn3, den3); 
bode{sysl ,sys2,sys3) 
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6.13.1.3 System in State Space 

Consider a system with the following state-variable matrices 

A={O 1:-24.5 -4.5}; 

B={0;24.5}; 

C={l 0}; 

D={O}; 

bode(A,B,C,D) 
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6.14 System Models From Experiment Frequency Data 

Bode plots can be used to derive system models or verify models ( ob-
tained by other methods) by using information from experimental frequency 
data. The model obtained is in the form of a transfer function deduced di-
rectly from the frequency response. The issues and methods involved in the 
derivation of dynamic models by using experimental data were covered in 
Chapter 2. Sometimes the only practical or feasible way to obtain a model 
is in the form of an approximate one from frequency-response data. It is 
relatively easy to obtain the frequency response of a system experimentally. 
The procedure is to introduce a sinusoidal input and then measure the gain 
(logarithm of the amplitude ratio of output to input) and the phase differ-
ence between output and input. The curves plotted from this data then 
constitute the system model. Using the methods given in previous sections, 
one can derive the model directly from this information .. Model verifica-
tion using experimental data is accomplished by extracting an approximate 
transfer function from the plots by fitting straight lines to the data and esti-
mating breakpoints (cut-off frequency), that is, finding the poles and zeros. 
General plots of complex pole factors with different damping ratios (Figure 
6.8) are used to estimate the damping ratios of complex factors from the 
frequency overshoot. The model obtained from the data is then compared 
with the model derived by other methods for purpose of model validation. 
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6.15 Nyquist Analysis 

For most systems, an increasing gain eventually causes instability. How-
ever, this relationship between gain and stability margins is not always 
valid. Occasionally the relationship reverses itself; that is, the system (e.g., 
an amplifier) becomes unstable when the gain is decreased. These conflict-
ing observations constitute the central motivation behind Nyquist analysis, 
which is based on a result from complex variables theory known as the ar-
gumentprinciple. Nyquist analysis is a graphical procedure carried out in 
the frequency domain in order to determine absolute and relative stability 
of closed-loop control systems. Information about stability is available di-
rectly from a graph of the sinusoidal open-loop transfer function G(s), once 
the feedback system has been put into canonical form. 

6.15.1 Advantages of Nyquist Method 

There are several reasons for which the Nyquist method can be chosen 
to determine information about system stability. 

• Routh-Hurwitz, BIBO, and asymptotic stability methods are often 
inadequate because, with few exceptions, they can only be used for 
determining absolute stability. Nyquist analysis is used for the deter-
mination of both absolute and relative stability, and for the evaluation 
of the closed-loop frequency response. 

• The Nyquist method can handle time delay functions, i.e., terms like 
e-Ts, in the characteristic equation without requiring the use of ap-
proximations, whereas the Routh-Hurwitz method is only strictly ap-
plicable to systems whose characteristic equation is a finite polyno-
mial in s. In order to deal with time delay functions it is necessary to 
employ approximations for the function e-Ts when using the Routh-
Hurwitz method. Hence, the Nyquist method yields exact results for 
both absolute and relative stability of the systems. 

• Nyquist techniques are also useful for obtaining transfer functions of 
components or systems from experimental frequency-response data. 
The polar plot may be directly graphed from sinusoidal steady state 
measurements on the components making up the open-loop transfer 
function. 

• Nyquist methods arc very useful in the determination of system sta-
bility properties when transfer functions of loop components are not 
available in analytic forms, or when physical systems arc to be tested 
and evaluated experimentally. 
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6.16 Polar Plots 
As developed in sections on Bode plots, the transfer function G(s) can 

be represented in the frequency domain as a sinusoidal transfer function by 
substituting jw for sin G(s) such that 

G(jw) = G(s)is=jw 

= ReG(jw) + jimG(jw) 

= X(w) + jY(w) 

= Aei<P, 

where A is the magnitude of the transfer function G(jw) 

A= IG(jw)l 

= Jx(w)2 + Y(w)2, 

and¢ is the phase angle of the function G(jw) 

¢ = argG(jw) 

_ 1 Y(w) 
=tan X(w)' 

The resulting form G(jw) = Aeitl> is a complex function of the single vari-
able w and can be plotted in two dimensions with w as a parameter. The 
complex function G(jw) can be written in the following three equivalent 
forms 

G(jw) = AargG(jw) (Polar Form) 

G(jw) = A( cos¢+ j sin¢) (Euler form) 

G(jw) = X(w) + jY(w) (Complex Form) 

A polar plot of G(jw) is a graph of Y(w) vs. X(w) in the finite portion of 
the G(jw)-plane for -oo ~ w ~ oo. The polar plot of G(jw) can also be 
generated on a polar coordinate system. The magnitude and phase angle 
pair denoted by (M, ¢) are plotted with w varying between -oo ~ w ~ oo. 
However, for practical systems negative frequency is not defined and hence 
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the range of interest is reduced to 0 ::; w ::; oo. The locus of G(jw) is 
identical on either the complex plane or polar coordinate system. The 
choice of coordinates depends on which form of the equations above is 
easier to use. Experimental data is usually expressed in terms M and ¢, 
in this case, polar coordinates are the natur::tl choice. The construction of 
polar plots proceeds in the same way as for the Bode plots by considering 
the four classes of factors. 

6.17 Four Classes of Basic Factors 

As was the case with Bode plots the four classes arc: ( 1) constant factors, 
(2) simple zero and pole factors, (3) integrator and derivative factors, and 
(4) complex pole and zero factors. 

• Constant Factors 

G(s) = K. 

A is the magnitude of the transfer functiou G (j w) 

A= IG(jw)l 

=IKI. 
¢ is the phase angle of the function G(jw) 

¢ = argC(jw) 

= tan- 1 (;) 

= 0. 

The polar plot is a point on the real axis at a distance IKI from the origin. 

• Simple (First-Order) Zero and Pole Factors 

5 1 
G(s) = 1 + _:_ and G(s) = ( ) . 

We 1 +~ 
We 

Consider the simple pole 
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G(8) 1 
8 

(1 + -) 
We 

==? G(jw) = 1 . 
(1 + JW) 

We 

The magnitude and phase angle are thus given by 

A~ vl+(::r 
¢ = -tan-1 (~). 

. We 

To draw the polar plots, find the values of the magnitude and phase angle, 
i.e., the polar pair (A,¢), for various values of w. In particular, consider 
w = 0, w = We and w = oo. 

w = 0 ==} (1,0) 

W =We==} (1/J2, -45) 

w = 00 ==} (0, -90). 

The resulting locus for 0 :::; w :::; oo is the lower semicircle of a circle of radius 
0.5 and Cartesian center (0, 0.5) as shown in Figure 6.11. The arrows on 
the curve show the direction of increasing frequency w. The graph for the 
frequency range -oo :::; w :::; 0 is the mirror image of the lower semicircle 
about its diameter, i.e., the upper semicircle. 

6.17.0.1 The RC Filter Circuit 

The RC filter circuit is a good example of a simple pole factor. Its transfer 
function was derived in the sections on Bode plots. The polar plot of the 
circuit can be drawn in the same way as for the generic simple pole, with 

1 
cut-off frequency as We = RC. 

G 8 _ V2(8) _ 1 
( ) - V1(8) - 1 + 8RC 

0 1 
==? G(Jw) = 1 + jwRC 
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Nyquist Diagrams 
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FIGURE 6.11 

1 Polar Plot for G(s) = ----,8,..-
1+-

'lVc 

The magnitude and phase angle are given by 

A= 1 J1 + (wRC) 2 

¢ =- tan- 1 wRC. 

In order to draw the polar plots, the values of A and ¢ for various values 
of w are obtained, in particular, the following frequencies are considered; 
w = 0, w = We, w = oo. As was the case in the generic simple pole, the 
polar plot for the frequency range 0 :::; w :::; oo is the lower semicircle of a 
circle of radius 0.5 and center (0, 0.5) as shown in Figure 6.12, where the 
arrows on the curve indicate the direction of increasing frequency w. 

The polar plot of the simple zero factor can be drawn in the same way 
as has been done for the simple pole factor. 

s 
G(s) = 1 +-

We 

JW 
==? G(jw) = 1 +-

We 
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Nyquist Diagrams 
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FIGURE 6.12 
Polar Plot for G(s) = l+;RC 

Magnitude and phase angle are given by 

The polar plot is drawn by first determining the magnitude and phase 
angle at different frequencies, in particular, 

w = 0 ===} (1, 0) 

W =We= 1 ===} (J2,45) 

W = 00 ===} (oo,90°). 

This means that the polar plot is simply the upper half of the straight 
line graph passing through Cartesian point (1, 0) in the complex plane and 
parallel to the imaginary axis. Thus the polar plot of the simple zero factor 
has an appearance completely different from that of the simple pole factor. 

• Integrator and Derivative Factors 

1 G(s) = ~ and G(s) = s. 
s 
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Consider the integrator factor first. The magnitude A is obtained as 
follows: 

1 G(s) = -
s 

1 1 =?A=I-. I 
JW W 

The pha::~e angle q; is given by 

¢ = argG(jw) 

= 0- tan- 1 (*) 
= -90°. 

This means that the polar plot of the integrator factor is the negative 
imaginary axis. For the derivative factor, the same analysis can be 
carried out and the magnitude A is obtained as follows: 

G(s) = s 

==?A= IJwl =w 

The phase angle ¢ is given by 

¢ = argG(jw) 

= tan- 1 (*) 
=goo. 

This means that the polar plot of the derivative factor is the positive 
imaginary axis. 

• Complex (Second-Order) Pole and Zero Factors 

The low and high frequency portion of the polar plots for the complex 
pole factor arc determined by using expressions of its magnitude and 
phase angle. The magnitude A of the transfer function is obtained by 
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using s = jw in G(s). Thus. 

A= IG(.iw)l 

=I 1 I 
[1 + 2~(~:) + (~:) 2] 

1 

The phase angle ¢ takes the form 

¢ = argG(jw) 

- -t -1 ( 
2~~ ) - an 2 w 
1--

w2 n 
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The polar plot is drawn by first evaluating the magnitude and phase 
angle, i.e ... the polar pair (A,¢), at different frequencies. 

w = 0 ===> (1,0) 

W = Wn ===> ( 21~, -90°) 

w = 00 ===> (0, -180°). 

The polar plot starts at the polar point (1, 0) and ends at (0, -180°) as 
w increases from 0 to oo. Thus, the high-frequency portion is tangent 
to the negative real axis. The values of G (jw) in the frequency range 
of interest can be calculated directly or by use of the Bode diagram. 
Similar analysis can be conducted for the complex zero factor. 

6.17.1 Properties of Polar Plots 

• The polar plot for the complex function 

G(jw) +a, 

where a is any complex constant, is identical to the plot for G(jw) 
with the origin of coordinates shifted to the point -a. 

• The polar plot of the tram:ifer function of a time-invariant, constant-
coefficient, linear system cxhibil;s conjugate symmetry, i.e., the graph 
for -oo :S: w :S: 0 is the mirror image about the horizontal axis of the 
graph for 0 :S: w :S: oo. 
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• The polar plot can be constructed directly from Bode plot. Values of 
magnitude and phase angle at various frequencies w on the Bode plot 
represent points along the locus of the polar plot. 

• Constant increments of frequency are not generally separated by equal 
intervals along the polar plot. 

6.17.2 Nyquist Path 

Nyquist analysis is based on the argument principle from the mathemat-
ics field known as Complex variables. This principle states that the Nyquist 
Path is a closed contour in the s-plane that completely encloses the entire 
right half of the s-plane (RHP). So that Nyquist Path should not pass 
through any poles of G(s), small semicircles along the imaginary axis or at 
the origin of G ( s) are required in the path if G ( s) has poles on the Imag-
inary axis (s = jw) or at the origin (s = 0). The radii £ of these s1nall 
circles are interpreted as approaching zero in the limit. In order to enclose 
the RH P at infinity, a large semicircular path is drawn in the RH P and 
the radius R ofthis semicircle is taken as infinite in the limit. It is apparent 
that every pole and zero of G(s) in the RHP is enclosed by the Nyquist 
Path when it is mapped into the C(s)-plane. 

6.17.3 Nyquist Diagram 

The Nyquist Diagram is an extension of the polar plot. It is a mapping of 
the entire Nyquist Path into the G(s) and it is constructed using mapping 
properties. The Nyquist diagram is the polar coordinate representation of 
G(jw) in the G(s)-plane. It is a mapping of the positive imaginary axis 
of the s-plane into the G(s)-plane for a close mapping in the G(s)-planc, 
the negative imaginary axis of the s-plane is also mapped. The conjugate 
complex property of imaginary numbers ensures G(jw) is reflected in the 
real axis. Substitute jw for s in the transfer function and evaluate the 
resulting complex number. 

6.17.4 Plotting and Analyzing the Nyquist Plot 

~ Check G(s) for poles on the imaginary axis (jw) and at the origin. 

• Sketch the image of path in the G ( s) plane. 

• Draw the mirror image about the real axis of the sketch from 2. 

• Usc equation to plot the image of path. This path at infinity usually 
plots into a point in the G(s). 

• Employ equation to plot the image of path. 
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• Connect all curves drawn in the previous steps. 

• Evaluate the number of clockwise encirclements of -1, and call that 
number N. 

• Determine the number of unstable ( RH P) poles of G ( s), and call that 
number P. 

• Calculate the number of unstable closed-loop roots, Z; Z = N + P. 

• For stability, Z = 0, which means no closed-loop poles in the RHP. 

• The Nyquist plot will always be symmetric with respect to the real 
axis. 

6.17.5 Nyquist Stability Criterion 

The Nyquist stability cr:•;erion relates the open-loop frequency response 
to the number. of closed-loop poles of the system in the RH P. The study 
of the Nyquist criterion will allow the determination of stability from the 
frequency response of a complex system, for example, with one or more 
resonances, where the magnitude curve crosses 1 several times and/or the 
phase crosses 180° several times. It is also very useful in dealing with open-
loop, unstable systems, nonminimum-phase systems and systems with pure 
delays (transportation lags). A closed-loop control system is absolutely 
stable if all the roots of the characteristic equation have negative real parts. 
Put differently, the poles of the closed-loop transfer function, or the zeros 
of the denominator 

1 + KG(s) 

of the closed-loop transfer function, must lie in the left-half plane (LHP). 
The Nyquist stability criterion establishes the number of zeros of 1 +KG(s) 
in the RHP directly from the Nyquist stability plot of KG(s). 

6.17.5.1 Statement of Nyquist Stability Criterion 

Let P be the number of poles of KG(s) in the RHP, and let N be the 
number of CW encirclements of the (-1,0) point, i.e., KG(s) = -1 in 
the KG(s)-plane. The closed-loop control system whose open-loop transfer 
function is KG(s) is stable if and only if 

N= -P $0. 

If N > 0 (i.e., the system is unstable), the number of zeros Z of 1 + KG(s) 
in the RHP is determined by 
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Z=N+P. 

If N:::; 0, the ( -1, 0) is not enclosed by the Nyquist stability plot. There-
fore, N :::; 0 (stable system) if the region to the right of the contour in 
the prescribed direction does not include the ( -1, 0) point. Shading of this 
region helps significantly in determining whether N :::; 0; that is, if and only 
if, the ( -1, 0) point does not lie in the shaded region. 

Example 6,7 Consider the system described by 

1 
KG(s) = ( ) . ss+1 

Check the Nyquist stability plot. The region to the right of the contour 
has been shaded. Clearly the ( -1, 0) point is not in the shaded area, which 
means N :::; 0. The poles of KG(s) are at s = 0 and s = -1, neither of 
which are in the in the RH P, P = 0 

N= -P=O 

6.17.6 Nyquist Diagrams Using MATLAB 

Use of MATLAB 
numG=[1}; 
denG=f1 2 1}; 
Nyquist(numG, denG) 

6.17.6.1 System in state space 

A=[O 1; -25 -4); 
B=[O; 25); 
C=f1 0}; 
D=[Oj; 
Nyquist(A,B,C,D) 
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Nyquist Diagrams 
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Nyquist Diagram for KG(s) = ( 1 )2 
s-1 

Nyquist Diagrams 

0.8 

-1L----=-o-'-=.s,.-----o=-'.a=---_-=-o.'=7---=-o-'-=.a=---_o=-'.5=---_-=-o'-::.4-....,-o,..,.3=---_-=-"o.'=-2---:-o_L.1 _ __, 
Real Axis 

Nyquist Plot 

These are the Nyquist plots obtained using MATLAB. 
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6.18 Argument and Rouche's Theorem 

In this section, Cauchy's residue theorem is used to derive two theoreti-
cal results that have important practical applications to Nyquist analysis. 
These re,;ults pertain to functions whose isolated singularities are poles. 

Definition 6.1 A function f is said to be meromorphic in a domain D if 
at every point of D 'it is either analytic or has a pole. 

Theorem 6.1 (Argument principle) Iff is analytic and nonzero at each 
point of a simple closed positively oriented conto11T C and is meromorphic 
inside C, then 

where No(!) and Np(f) are, Tcspectively, the numbcT of zeros and poles of 
f inside C (muJtiplicity indnded). 

Theorem 6.2 (Rouche 's theorem) Iff and g are each functions which are 
analytic inside and on a simple closed contour C and if the strict inequality 

lf(z) ~ g(z)! < lf(z)! 

holds at each point on C, then f and g must have the same total number 
of zeros (counting multiplicity) inside C. 

6.19 Examples of Nyquist Analysis 

In this section detailed examples of Nyquist plots are developed and 
analyzed. 

Example 6.8 

1 
GH(s) = ; where Pl, P2 > 0 

(s + pr)(s + P2) 
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0.4,-----,----,.----~-
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I 
I 

-0.1 
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-0.3 
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' ' 

--- )------

' ' ' 

-o:g.1 

//. 
~-=~·/J 

0.1 0.2 0.3 0.4 0.5 
Real Axis 

Nyquist Plot 

ab -> s = jw 0 < w < oo 

1 
GH(s) = (s + Pl)(s + Pz) 

1 
GH(jw) = -,--(J-·~,-+-1-)1.,.....,)(-jw-+-pz-:-) 

1 1 w 1 w 
---:;=;<===::;=--;::~=:;=L- tan- --tan- -JPI + w2 .jp§ + w2 P1 P2 

w-> 0 GH = - 1-L.oo 
P1P2 

1 / 0 0 0 w -t 00 G H = - L - 90 - 90 =} OL. - 180 
00 

1 . IOHI ranges from-- to 0 
P1P2 

L.GH from L.O" to L.- 180° 
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Angle from .frrst quarter to second quarter=? Crossing the imaginary a:ris 

Example 5.9 

·g be =? s = lim Rel 
R-+oo 

1 . L. -e 
R 2 e2ig + (Pl + P2) ReJg +P1P2 

OL.- ()o 

N = Z-P 

0 = z -0 

Z = 0 --+ stable 

c 
·-----+-----~+----·-----

a 

Nyquist Plot 

1 GH(s) =-
s 

Re(s) 



456 Design and Analysis of Control Systems 

Im(s) 

d 

Re(s) 

Nyquist Plot 

s = JW O<w<oo 

1 1 / 0 GH =- = -L _go 
jw w 

u) ---+ 0 ooL - goo 

w ---+ oo OL -goo 

s = lim Reje 
R_.oo 

1 1 
GH = -. = -L - () 

Re10 R 
R ---+ oo G H ---+ OL - () 

s = lim pc1e 
p~o 

=-1-.=~L-(} 
peJe P 

G H as p ---+ 0 = ooL - () 

ooL90" to ooL - 90° 
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Nyquist Plot 

Example 6.10 

1 
GH(s) = -s(,..-s_+_P-1):-:(-s -+-P~2) 

The system has pole at zero. For the path be 

Im(s) 

d 
Re(s) 

R 

Nyquist Plot 
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s = jw o<w<oo 

. 1 GH(Jw) = . . . 
JW(JW + pl)(.JW + P2) 

1 1 w 1 w -r=;::===::--;=;;===L- go- tan- --tan- -
w)w2 + P1 Jw2 + P2 P1 P2 

as w __, 0 

as w __, oo 

Example 6.11 

GH __, ~L- goo__, ooL- go" 
0 

GH __,]__,~_-goo- goo- goo= OL- 270" = QL_goo 
00 

s = lim Rej0 
R->= 

1 
Rej0 (Rej 0 +pi) (Reje +p2) 

as R __, oo QL_ - 8 

OL - goo to OL_goo 

OOL-8 
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The system has pole at zero. For path ad 

s = jw O<w<oo 

GH = - 1- = - 1-L -180° 
(jw) 2 w.w 

G 1 / 0 0 H -) - L - 180 = XL - 180 
0 

w-+ 00 GH-+ ~L -180° = OL -180° 
00 

To check take w = 1 

Nyquist Plot 

GH = ~L- 180° 
1 

s = lim Re·711 
R-+oo 

1 
GH(jw) = (Re111)(Re1e) 

e 

1 1 
= R2e210 = R2L- 20 

as R -+ oo = OL - 20 

OL - 180° -+ 0L180° 

Re(s) 
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s = lim peje 
p~O 

1 1 1 
GH = (pei&)2 = p2e2ifi = p2L- 28 

as p ____, 0 = ooL180° ____, ooL - 180° 

Nate: there should be one semicircle since 'it 'ts Type 1. 

Example 6.12 

N=Z+P 

Z=N-P 

=1-0 

Z=l =?unstable 

K 
GH(s) = s(s- 1) 

The system has a pole at zero. For path de 

G(jw) = (jw)(:- 1) 

K 
---===L- goo- tan- 1 w 
w.vw2 + 1 

W--70 
. 1 G(Jw) = 0L- goo 

G(jw) = 2_L- goo- goo 
00 

w ---7 00 

= OL- 180° 
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Im(s) 

f 

Nyquist Plot 

To check put w = 1 

K -==L- 90°- tan- 1 1 
lVT+l 

s = lim Reje 
R--+oo 

K K 
G H = 0 . e = - L - 2fJ 

R.e1 (Rc7 -1) R 
as R----> oo OL - 20 = OL180° 

s = lim peje 
p--+0 

Re(s) 

GH = K = K L-20 
peJ11 (pe1 8 - 1) p 

Example 6.13 

as p ____, 0 = ooL - 20 

N = Z-P 

1 = Z+O unstable 

KG(s) = K(s + 2) 
(s + 10) 
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Does not have a pole at zero, so for path ab 

for bed 

s = jw O<w<oo 

G ,, , _ jw +2 
(Jcu) - (jw + 10) 

vw2 +4 w w L. tan- 1 - - tan- 1 -
-vr=w::;;o2 =+=1::::::0=:=:=0 2 1 o 

w----->0 

w -----> 00 

{4 2 
G(,jw) = V lOOL.O- 0 = 10L.Oo 

• Im(s) 

a 

s = lim Reje 
H-~oo 

e 

c 

Re(s) 

as R-----> oo 
}{() +2 - / () 

11 -1L.0 
Re7 + 10 

Z = N+P 

P -----> 0 no poles on RHP 

N -+ 0 rw circle for - 1 

slable for any K > 0 

The mot locus is also shown in the following diagram. 
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0.~-~-~--.----~--

0. 

0. 

0. 

\ 

-0.1 \ 
i ' -o.2L ' 

-0.3~ 

-0.4' -----~-----
I 

-o.~h· 3 · -;;0 . ...,.4--0;;..s;c-----oo~.ec-----;;o""'. 7---;'-o.o;-a ---;o~. go--
Real Axis 

These examples illustrate Nyquist analysis. 

6.20 Stability margins 

463 

Quite a significant class of control systems become unstable if the gain 
increases past a critical point. The gain margin ( 0 !VI) and the phase margin 
(P 1H) are two quantities that measure the stability margin uf a control 
system, and they are directly related to the stability criterion. 

6.20.1 Gain Margin (GM) 

The gain margin is the factor by which the gain is less than the neutral 
stability value. It can be read directly from the Bode plot by measuring 
the vertical distance between IKO(jw)l curve and the IKO(jw)l = 1 line 
at the frequency where argO(jw) = 180°. This means the OM is the factor 
by which the gain K can be raised before instability arises and the system 
is unstable if 

IOMI < 1 or log10 IOMI <OdE. 

The 0 J'vf can also be determined from the root locus with respect to K by 
noting two values of K; at the point where the locus crosses the imaginary 
(jw) axis (Kjw), and at the nominal closed-loop poles (Knom)· The gain 
margin is the ratio of these gains such that 

OM= Kjw 
Knom 
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6.20.2 Phase Margin (PM) 

The phase margin is the amount by which the phase of G(jw) exceeds 
-180° when IKG(jw)l 1. This is an alternate way of measuring the 
degree to which the stability conditions are satisfied. A positive PM is 
necessary for stability. Together, the two stability margins GM and PM 
determine how far the complex quantity G(jw) passes from the -1 point, 
which is another way of stating the neutral-stability point. These margins 
can also be defined from Nyquist plots as measures of how close the Nyquist 
plot comes to encircling the point -1. The G M indicates how much the 
gain can be raised before instability occurs and the PM is the difference 
between the phase of G(jw) and 180° when of KG(jw) crosses the circle 
IKG(jw)l = 1. A stable system, i.e., one with no Nyquist encirclements, 
has a poc;itive value of PM. It is however, easier to determine stability 
margins from Bode plots than from Nyquist plots. Tbe crossover frequency 
refers to the frequency at which the gain is unity, i.e., 

K = 1 or log10 K = 0 dB 

One of the benefits of frequency-response design is the ease with which the 
effects of the gain changes D.K. 

6.20.3 Relative Stability 

The relative stability of a feedback control system is easily determined 
from the polar plot or Nyquist stability plot. The phase crossover frequency 
We is that frequency at which the phase angle of KG(s) is -180, i.e., the 
frequency at which the polar ploc crosses the negative real axis. The gain 
margin is given by 

]_ 

gain margin= IKG(Jwc)l. 

The notion of relative stability i;o central in analyzing control systems. 

6.21 Gain and Phase Relationship 

One of Bode's important contributions is the theorem that states that 
for any stable minimum-phase system (one with no RHP zeros or poles), 
the phase of G(jw) is uniquely related to the magnitude of G(jw). For the 
Bode plots defined in terms of log scale (i.e., log10 IG(jw) I vs. log10 w such 
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that the slope is kdB) the theorem is fairly simplified 

argG(jw) ~ k x 90° 

When IKG(jw)l = 1, 

arg G(jw) ~ -90° if k = -1 

argG(jw) ~ -180° if k = -2. 

Stability is achieved if 

argG(jw) > -180° for PM> 0 

This theorem is formally stated as follows: 

11+= (dM) argG(jw) =; -= du W(u)du 

where 

M = log10 IG(jw)l 

u = log10 (;J (normalized frequency) 

W(u) = log10 (coth lul/2) (weighting function). 

6.22 Compensation 

465 

Compensation is when dynamic elements are typically added to feedback 
control systems to improve their stability and error characteristics. Basic 
types of feedback: proportional (P), derivative (D), and integral (I). There 
are two kinds of dynamic compensation: the lead network, which approx-
imates proportional-derivative (PD) feedback, and the lag network, which 
approximates proportional-integral (PI) control. In this section, compen-
sation is discussed in terms of frequency-response characteristics. In many 
cases, the compensation will be implemented in a microprocessor. Tech-
niques for converting the continuous compensation D(s) into a form that 
can be coded in the computer will be discussed under Digital Control Sys-
tems. The frequency response stability analysis to this point has considered 
the closed-loop system to have the characteristic equation 

1+KG(s)=O. 
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With the introduction of compensation, the closed-loop characteristic equa-
tion becomes 

1 + D(s)G(s) = 0, 

where D(s) is a PI, PD or PID controller. The previous discussion pertain-
ing to the frequency response of KG ( s) applies directly to the compensated 
case if the frequency response of D( s )G( s) is analyzed. 

6.22.1 PD Compensation 

The starting point is compensation design using the frequency response 
with PD control. The compensator transfer function is given by 

D(s) = Kp + Kns. 

6.22.2 Lead Compensation 

In order to alleviate the high-frequency amplification of the PD compen-
sation, a first-order pole is added in the denominator at frequencies higher 
than the breakpoint of the PD compensator. 

D(s) = Kp+~ns. 
1+-

Wp 

6.22.3 PI Compensation 

In many problems it is important to keep the bandwidth low and also 
to reduce the steady state error. For this purpose, a proportional-integral 
(PI) or lag compensator is useful. 

1 
D(s) = Kp + -K . 

JS 

6.22.4 Lag Compensation 

Lag compensation approximates PI control. For frequency-response de-
sign, it is more convenient to write the transfer function of the lag compen-
sation in the form 



Frequency Response Design Methods 

1 
Kps+K 

D(s) = 1 I 

s+-
Wp 

467 

6.22o5 PID Compensation (Lead-Lag Compensator) 

Sometimes it is effective to use both lead and lag compensation. By 
combining the derivative and integral feedback, PID is established, 

1 
D(s) = Kp +KDs+ -. 

Krs 

This compensation is roughly equivalent to combining lead and lag com-
pensators in the same design, and so is sometimes referred to as a lead-lag 
compensator. Hence, it can provide simultaneous improvement in transient 
and steady state responses. Although lead-lag compensation approximates 
PID control, the two approaches involve two completely different strategies. 

6.22.6 Summary of Compensation Characteristics 

® PD control adds phase lead at all frequencies above the breakpoint. 
If there is no change in gain on the low-frequency asymptote, PD 
compensation will increase the crossover frequency and the speed of 
response. The increase in magnitude of the frequency response at the 
higher frequencies will increase the system's sensitivity to noise. 

Lead compensation adds phase lead at a frequency band between Lhe 
two breakpoints, which are usually selected to bracket the crossover 
frequency. If there is no change in gain on the low frequency asymp-
tote, lead compensation will increase both the crossover frequency 
and the speed of response over the uncompensated system. If K is 
selected so that the low-frequency magnitude is unchanged, then the 
steady state errors of the system will increase. 

• PI control increases the frequency-response magnitude at frequencies 
below the breakpoint, thereby decreasing steady state errors. It also 
contributes phase lag below the breakpoint, which must be kept at a 
low enough frequency to avoid degrading the stability excessively. 

Ill Lag compensation increases the frequency response magnitude at fre-
quencies below the two breakpoints, thereby decreasing steady state 
errors. Alternatively, with suitable adjustments in K, lag compen-
sation can be used to decrease the frequency-responi:ic magnitude at 
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frequencies above the two breakpoints so that We yields an acceptable 
phase margin. Lag compensation also contributes phase lag between 
the two breakpoints, which must be kept at frequencies low enough 
to keep the phase decrease from degrading the PM excessively. 

6.23 Problems 

Problem 6.1 IJmw Bode, Nyquist plots for a sixth-onie1· Fade approxima-
tion to a p11,re delay of 1 second. 

Problem 6.2 Sketch the polar plot of the frequency response for the fol-
lowing transfer functions: 

{a) 

{b) 

{e) 

{d) 

1 
KG(s) = (1 + 0.5s)(1 + 2s) 

KG(s) = (1 + 0.5s) 
s2 

KG(s) = s + 10 
s2 + 6s + 10 

KG(s) = 30(s + 8) 
s(s + 2)(s + 4) 

Problem 6.3 A rejection network that can be utilized instead of the tmin-T 
net•work is the bridged- T network: shown below. 

Bridged T-network 

The tmnsfcr function of this network is given by 

s2 +w2 
G(s) = s2 + 2(wns/Q) + w;,' 

f-----o + 
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2 2 WnL (wnL) 2 
where wn = LC, and Q = --, and R 2 is adjusted so that R 2 = -'-------'-

Rl 4Rl 
Show that the expression given for G( s) is correct. 

Problem 6.4 A control system for controlling the pressv.re m a closed 
chamber is shown below, together with its flow graph model. 

Desire~ Controller 
pressure 

Irrfmite 
pressure r---Y' 

source 

1 

Pressure Controller 

Controller 
De (s) 

Valve 

-H(s) 

Measurement 
Flow Graph Model 

The transfer function for the measuring element is 

G(s) _ 100 
- s2 + I5s + 100' 

and the transfeT function for the valve is 

1 
Dl(s) = (0.1s + 1)(s/15 + 1) · 

The contmLler function is given by 

1 
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Obtain the frequency response characteristics for the loop transfer function 

Dc(s)DI(s)G(s) [~]. 

Problem 6.5 Autonomozts, self-driven veh·icles can be used in warehouses, 
airports, and many other applications. These vehicles follow a wire embed-
ded in the floor and adjust the steerable front wheel in order to maintain 
proper direction. The sensing coils, mounted on the fmnl wheel assembly, 
detect an errm· ·in the direction of travel and adjust the steering. The overall 
control systen1. open-loop transfer function is 

K 
DG(s) = ( )2 ss+?T s(s/?T + 1)2 · 

It is desired to have a bandwidth of the closed-loop system exceed 2?Trad/ s. 
(a) Set Kv = 2?T and sketch the Bode diagram. 
(b) Using the Bode diagram, obtain the logarithmic-magnitude vs. phase 

angle curve. 

Problem 6.6 (a) Calculate the magnitude and phase of 

1 
G(s)= s+1' 

for w = 0.1, 0.2, 0.5, 1, 2, 5, and 10rad/sec. 
(b) Sketch the asymptotes for G ( s), and compare these with the cmnpv.ted 

results from part (a). 

Problem 6. 7 Draw the Bode plots for each of the following systems. Com-
pare the sketches with the plots obtained using MATLAB. 

1 G ( s) - ..,.-------,--:::-:-::------:-
- (s+1) 2 (s2 +s+4) 

(a) 

(b) G(S)- s 
- (s + 1)(s + 10)(s2 + 5s + 2500) 

(c) G(s) _ 4s(s + 10) 
- (s + 50)(4s2 + 5s + 4) 
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(d) G s _ lO(s + 4) 
( )- s(s+1)(s2 +2s+5) 

(e) G s _ lOOO(s + 1) 
( )- s(s+2)(s2 +8s+64) 

(f) G s _ (s + 5)(s + 3) 
( )- s(s+1)(s2 +s+4) 

(g) Gs _ 4000 
()- s(s+40) 

(h) G(s) _ 100 
- s(1 + 0.1s)(1 + 0.5s) 

(i) 
1 G(s)-

- s(1+s)(1+0.02s) 

Problem 6.8 A certain system is represented by the asymptotic Bode di-
agram shown below. Find and sketch the response of this system to a unit 
step input (assuming zero initial conditions). 

10 ~ 

1 ~ 
0. 1 

1 10 100 
0) 

1000 

Problem 6.9 Prove that the magnitude slope of -1 in the Bode plot cor-
responds to - 20dB per decade. 

(a) Sketch the polar plot for an open-loop system with transfer function 
1/ s2 , that is, sketch 

where C1 is a contour enclosing the entire RHP. (Hint: assume C1 takes a 
small detour around the poles at s = 0). 
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(b) Repeat part (a) for an open-loop system whose tmnsfer function ·is 

1 
G(s) = 2 2. s +wo 

Problem 6.10 Draw a Nyquist diagram for each of the following systems, 
and compare the result with that obtained using the MATLAB command 
Nyquist. 

(a) 

(b) 

(c) 

KG(s) = K(s + 2) 
s + 10 

K 
KG ( s) = ..,---.,...,---:-:c-

(s + 10)(s + 2) 2 

KG(s) = K(s + 10)(s + 1) 
(s + lOO)(s + 2)3 

Using the plots, estimate the range of K for which each system is stable, 
and qualitatively verify the result using root locus plot (generated by hand 
or using 1\!IATLAB). 

Problem 6.11 Draw a Nyquist d·iagram for each of the following systems, 
and compare the result with that obtained using the MATLAB command 
Nyquist. 

(a) 

(b) 

(c) 

KG(s) = K(s + 1) 
s+2 

K 
KG(s) = (s + 1)(s + 2)2 

KG(s) = K(s + 4)(s + 1) 
s(s + 2)4 

Problem 6.12 The forward-path transfer function of a unity feedback con-
trol system is 

K G ( s) - ---,-------,-
- s(s+6.54) 

Analytically, find the resonant peak Mpeak! resonant frequency Wr, and 
bandwidth BW of the closed-loop system for the following values of K: 

(a) K = 5 (b) K = 21.:39 (c) K = 100. 

Problem 6.13 Use MATLAB to find the resonant peak, Mpeak, resonant 
frequency Wr, and bandwidth B W of the following unity feedback contml 
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systems. Make sure that the systems are stable. 

(a) 
5 

G(s) = s(1 + 0.5s)(1 + 0.1s) 

(b) G(s) _ lO(s + 1) 
- s(s + 2)(s + 10) 

(c) G( ) 0.5 
s = s(s2 + s + 1) 

{d) G woe-s 
(s)= s(s2 +5s+5) 
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Chapter 7 

State-Space Design Methods 

7.1 Introduction 

In Chapter 2, it was shown that by using state-variable matrix modeling, 
a dynamic system described by higher-order differential equations can be 
expressed in terms of simple first-order differential equations. Such state-
variable models form the basis of state-space design and analysis. These are 
methods that use state variables, i.e., the analysis and the design are carried 
out in the state space. The techniques involve designing dynamic compen-
sation by working directly with the state-variable descriptions of dynamic 
systems. State space methods are simpler because they deal directly with 
the system states that are in simple first-order differential equation8. Fur-
ther advantages of state space methods include the ability to study more 
general models, facilitating the usc of ideas of geometry in differential equa-
tions, providing connections between internal and external descriptions, the 
ability to handle multi-input multi-output (JVIIMO) systems, and easy im-
plementation using software such as MATLAB. 

The use of the state space approach has often been referred to as mod-
ern control system design as opposed to class·ical control system design 
(transfer-function based approaches, root locus and frequency-response meth-
ods). This chapter discusses state-space methods of analysis and design for 
a broad range of dynamic systems. The role of the transfer function, the 
different state-space canonical forms, and the state-transition matrix are 
introduced. The theoretical basics and design issues involved in the state-
space subjects of observability, controllability, similarity transformation, 
full-state feedback, optimal control, estimator design, and compensator de-
sign are then discussed and illustrated. A number of design examples are 
provided including discussions about their implementation in MATLAB. 

475 
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7.2 The Block Diagram and the Transfer Function 

7.2.1 State-Space Description and the Block Diagram 

The state-space description of a linear system was previously discussed 
under the modeling of dynamic systems (Chapter 2). It involves four system 
matrices (or vectors): the input control signal vector (or scalar) u, the state 
vector x as well as its time derivative x, and the output vector y. The 
general form is given by 

x = Ax+Bu 

y = Cx+Du. 

(7.1) 

(7.2) 

The system state x is an n-vector where n is the number of the states in 
that system and u is an m-vector of control inputs. The output of the 
system is represented by an l-vector y. The system matrices A, B, C and 
D are known, respectively, as the plant (or generally as the system) matrix, 
input matrix, output matrix and the feed-through matrix. The plant matrix 
A is an n x n square 1patrix while the input matrix B is a n x m matrix. 
Matrices C and D have dimensions l x n and l x m respectively. At present, 
only linear time-invariant (LTI) systems are considered, hence, these system 
matrices are constant. The corresponding block diagram for this system 
is shown in Figure 7.1 

FIGURE 7.1 
The Block Diagram of a System in State Variable Form 

As illustrated in Figure 7.1, the physical significance of the different ma-
trices can easily be seen where the feed-through matrix D feeds part of the 
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input control u signal forward to the output signal y, the output matrix C 
transforms the system states x to output signals y and the input matrix 
B transforms the input control signal u to the derivative of the system 
states x. Finally the plant A, (or system matrix) that represents the plant 
dynamics transforms the state vector x to its time derivative x. Figure 7.1 
does not include the reference input that is necessary in the control system. 
Such control systems in which there are no reference inputs r(t) are known 
as regulators. 

Normally the state, control input, and the output vector are functions 
of time. Therefore, the state-space presentation for a single input single 
output (SISO) system can be given as 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t), 
(7.:3) 

(7.4) 

where in this case (SISO) the input and output are scalar quantities u(t) 
and y(t), respectively. The input matrix B and the feedfoward matrix D 
become column matrix or n-vector and a scalar constant, respectively, while 
the output matrix C is a row matrix or the transpose of an n-vector. In 
MATLAB the system matrices A, B, C, D, can be obtained from the 
system transfer function by the command "tf2ss". However, as it will be 
discussed later, MATLAB returns system matricet> in one of the canonical 
forms that might be different from the results one could get by normal 
trant>formation of the transfer function to state-variable form. The MAT-
LAB syntax for "tf2ss" is 

[A, B, C, D] = tf2ss(num, den), 

where num it> a row matrix of the coefficients of the numerator of the transfer 
function in descending powers of s. For MIMO systems, it will have as many 
rows as the number of outputs in the output vector y, therefore, for SISO 
system it will be a row vector whose elements are the coefficients of the 
descending powers of s in the numerator of G(s ). Vector den contains the 
coefficientt> of the denominator of the transfer function also in descending 
powers of s. 

Example 7.1 The dynamics of a hypothetical system can be presented by 
a third-order linear ordinary differential equation as 

d3x d2x dx 
-d 3 + 4-d 2 +3-d + 5x- 9 = 0. t t t 

If the system output is linearly dependent on the parameter x such that 
y = x, transform the system differential equation into the correspond'ing 
state-variable form. Do the same problem using MATLAB. (Hint: Assume 
a control step input of strength 9). 
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Solution 7.1 Letting x 1 = x, x2 = x, X3 = i, it follows that 

In state-variable form this becomes 

[i;ll [ 0 1 0 l [xll [0] ~2 = 0 o. 1 :x;2 + 0 9 
X3 -5 -3 -4 X3 1 

[:ell [1] y= [100] ~~ + 3 9. 

Therefore, the system maiJ·'ices become 

A= [ ~ ~ ~ l, B= [~], C= [100], D=[O]. 
-5-3 -4 1 

To get the state-space matrices using MATLAB, there 'ts need to know the 
system transfer function. The tmnsfer function of this system for a step 
input of stnmgth 9 can be derived (using methods discussed in previous 
chapters) and shown to be 

s2 

T(s) = s3 + 4s2 + 3s + 5 · 

As such, the MATLAB code for this pr-oblem becomes 
den=[l 4 3 5}; 
num=[l 0 0}; 
[A, 8, C, D}=tf2ss( num,den). 

The resulting system matr,ices are 

[-4 -3 -5] [1] 
A = ~ ~ ~ , B = ~ , C = [ 1 0 0] , D = [OJ . 



State Space Design Methods 479 

Although structw-ally there is a difference between the MATLAB results and 
the results presented above, these two are representing the same ir~Jorma
tion. The structural differ-ence arises because MATLAB presents the state 
vector starting with the higher-order element of the state in the form 

whereas the results of the computation are presented starting with the lower-
order element of the state vector resulting in 

Since these differences do occur,, the reader is reminded to exercise caution 
in ar-ranging the state vector when using MATLAB in cases like the one 
discussed above. 

7.2.2 Transfer Function, Poles, and Zeros 

Given a state description for a SISO system, there may be an interest in 
the system transfer function. This can be achieved by taking the Laplace 
transform for the state-variable equations which results in two equations 
with three variables 2£(s), y(s) and u(s). Eliminating 2£(s) and combining 
the two equations give one equation in y( s) and u( s). The transfer function 
is thus extracted as the function that maps u(s) Lo y(s) as shown below. 

Consider the SISO system given in Equations 7.3 and 7.4. The Laplace 
transform of the whole equation i~ given as 

sx(s)- x(ta) = Ax(s) + B u(s) 

y(s) = Cx(s) + Du(s). 

The first of these equations can be written as 

(si- A)x(s) = Bu(s) + x(ta) 

while the second can also be rewritten as 

c- 1 [y(s)- Du(s)] = x(s) 

Combining the two equations by elimination of x( s) yields 

(si A)C- 1[y(s)- D·u(s)] = Bu(s) + x(ta) 

(7.5) 

(7.6) 
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so that on isolation of y(s) from u(s) it follows that 

(si- A)C-1y(s) = [B + (si- A)C- 1D]u(s) + x(t0 ). 

Since the transfer function does not depend on the initial condition x(t0 ), 

one can easily extract the transfer function by setting x(t0 ) = 0 so that 

'T(s) = ~~:~ = C(si- A)- 1B +D. (7.7) 

The matrix ( si-A) - 1 has special importance in state-space analysis and 
is known as the system resolvent matrix <I>(s). It will be shown later that 
the resolvent matrix is a Laplace transform of the transition matrix <1)( t), 
which represents the natural dynamics of the system. 

The transfer function is given by 

. <I>(s) = (si- A)-1 = adj(si- A)' 
det 181- AI (7.8) 

where adj(si- A) refers to the adjoint (or adjugate) of matrix (si- A), 
which means the transpose of the matrix of the co factors of ( si- A). Hence, 
the transfer function can be written as 

T(s) = y(s) = C[adj(si- A)]B + Dlsi- AI 
u(s) lsi- AI · (?.9) 

From this transfer function (Equation 7.9), the characteristic equation is 
obtained by setting the denominator equal to zero, i.e., 

lsi- AI= 0. (7.10) 

As can be seen, the characteristic equation of the system equals the al-
gebraic characteristic equation of the matrix A whose roots are the eigen-
values of A. Therefore, since the poles of a system are the roots of its 
characteristic equation, it follows that the poles of the system in question 
will be just the eigenvalues of the plant (system) matrix. The zeros of the 
system are determined from the numerator of the transfer function. Since 
for a SISO system B is a column matrix while C is a row matrix and D is 
a scalar, it can be seen that the numerator represents a scalar polynomial 
in s, the roots of which are the zeros of the system in question. Thus to 
get the zeros of the system, the solution of the following equation must be 
determined, 
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C[adj(si- A)]B + Dlsi- AI= 0. (7.11) 

In MATLAB the transfer function of a system can be derived from its 
state variable presentation by the command "ss2tf". This returns the two 
vectors that contains the coefficients of the numerator and denominator of 
the transfer function respectively. Since the command has been designed 
to handle both MIMO and SISO systems, it becomes necessary to specify 
the input for which the transfer function is required. However, if the input 
is not specified, MATLAB sets the default input. The syntax is 

[num, den] = ss2tf(A, B, C, D, iu), 

where A,B,C and D are the system matrices and iu is an integer between 
1 and n specifying the input for which the transfer function is required. 
The poles and zeros of the system can also bEf determined in MATLAB by 
using the command "ss2zp". This returns a matrix of the zeros Zi of the 
transfer functions where each column represents the zeros corresponding to 
one input Yi and two vectors one of which is a vector containing the poles 
Pi of the system and the other is a vector that contains the gains ki of each 
numerator transfer function. For SISO systems however, the zeros will be 
returned in a column vector instead of a matrix. The transfer function in 
terms and zeros and poles is given by 

T(s) = k (s- zi)(s- z2) · · · (s- Zn-l)(s- zn) 
(s- pi)(s- P2) · · · (s- Pm-d(s- Pm). 

The syntax for the command "ss2zp" is 

[z, p, k] = ss2zp(A, B, C, D, iu), 

(7.12) 

where iu represents the single input in the system for which the poles and 
zeros are sought. In general, the use of this command is the same as the 
"ss2tf" discussed previously. 

Example 7.2 For the system whose state variable description has the fol-
lowing matr-ices; determine the system transfer- function, characteristic equa-
tion, poles and zeros. Comment on the system stability. Use MATLAB to 
do the same problem. 

[1 2 6] 
A= 284 , 

644 
D=[O]. 

Solution 7.2 The system transfer function is given by Equation 7.9 as 

T(s) = Y(s) = C[acij(si- A)]B + Dlsi- AI 
U(s) lsi- AI · 
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In this case it becomes 

T(s) = y(s) = C[adj(si- A)]B 
u(s) lsi- AI 

[
s .-1 -2 -6] 

(si- A) = -2 s- 8 -4 . 
-6 -4 s- 4 

Therefore, 

[
(s-8)(s-4)-16 2(s-4)-24 8+6(s-8) l 

adj(si- A)= 2(s- 4)- 24 (s- 1)(s- 4)- 36 4(s- 1)- 12 . . 
8 + 6(s- 8) 4(s- 1)- 12 (s- 1)(s- 8)- 4 

The numerator of the transfer function that gives the system zeros is 

C[adj(si-A)JB=[001] 2s+16 s2 -5s-32 4s+8 [
s2 - 12s + 16 2s + 16 6s- 40 l 

6s - 40 4s + 8 s2 - 9s + 4 

= 18.0s - 16.0 

Therefore, the system zero is at s = 0.8889. 
The characteristic equation is given by 

lsi-AI = o 

s -1 -2 -6 
-2 s- 8 -4 = 0 
-6 -4 s- 4 

(s- 4)[(s- 1)(s- 8) +56]= 0, 

which in expanded form gives the characteristic equation of the system as 

s3 - 13s2 + lOOs - 256 = 0. 

Therefore, the system transfer function becomes 

T(s) _ 18s- 16 
- s3 -13s2 + lOOs- 256' 

The roots of the characteristic equation, which are also the eigenvalues of 
A, are the poles of the system. The simplified characteristic equation of the 
system is 

(s- 4) [s2 - 9s + 64] = 0, 
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which gives the poles at s = 4, -3.7614, and s = 12.7614. Since all the 
system poles except one are positive, the system is not stable. 

In MATLAB, this problem could be solved giving the same results as 
follows: 

A={l 2 6;2 8 4;6 4 4}; 
8={1 3 0}; 
8=8' 
C=[O 1}; 
0=0; 
{z,p,k}=ss2zp( A8, C,D,l} 

7.3 System Response: The State-Transition Matrix 
For linear time-invariant (LTI) systems, the state-space description given 

by Equation 7.4 

x(t) =A x(t) + B u(t), 

is a system of first-order linear ordinary differential equations in the system 
states. In this equation, the control input is regarded as a forcing function. 
The time response of such systems (without feed-through) depends on the 
output matrix C and the system state vector 2f(t) such that 

y(t) = C x(t). (7.13) 

Since for LTI (linear time-invariant) systems, C is constant so the system 
response depends entirely on the state vector. Therefore, in the analysis of 
such system time response, one is interested in getting the time function 
of the state vector. There are several analytical techniques for determining 
the system time response, but in this chapter, focus will be placed on two 
methods only as described in the following sections. 

7.3.1 Direct Solution of the Differential Equation 

A system of equations in state-space form has an analytical solution 
analogous to that of a first-order differential equation of the form 

dx(t) 
~ = ax(t) + bu(t). (7.14) 
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This equation can be rewritten as 

dx(t) (t) - b (t) --;u- - ax - u , 

where u(t) is known as the forcing function. The description matrices 
replace the coefficients in the solution form. 

The solution for such an equation has two parts; the homogeneous part 
that assumes that the forcing function u(t) is zero, and the nonhomogeneous 
part that takes into account the effect of the forcing function. The general 
solution is obtained by using the superposition principle to sum up the 
two parts of the solution and the particular solution is then obtained by 
taking into consideration the given initial conditions. The general form of 
the homogeneous part is 

(7.15) 

The nonhomogeneous part can be obtained by the method of variation of 
parameters where 

Xnonhom = C(t)eat (7.16) 

so that 

d~~t) = C'(t)eat + aC(t)eat, 

which gives 

(7.17) 

The independent time variable t in the integral of Equation 7.17 has been 
changed to T in order to distinguish it from the t in the upper limit of the 
integration. Combining these results gives the nonhomogeneous solution as 

Xnonhom =eat lot e-a7 bU(T)dT 

=lot e-a(t-T)bu(T)dT. (7.18) 
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The general solution to the given first-order equation, which is a sum of 
homogeneous and nonhomogeneous parts of the solution, becomes 

(7.19) 

If the initial condition at t = 0 is x(t0 ), then the constant Cis found to be 
C = x(to)· This gives the particular solution as 

(7.20) 

The state-space solution also can be obtained to be similar to Equation 
7.20. Before proceeding, it is worth recalling that the exponential eat can 
be expressed in power series as 

at 1 2 1 3 1 4 1 5 e = 1 +at+ 71 (at) + 1 (at) + 1 (at) + 1 (at) + ..... . 
2. 3. 4. 5. 

(7.21) 

Analogous to the scalar expansion is the matrix exponential eAt, which is 
defined as 

At 1 2 1 3 1 4 1 5 
e =I+ At+ 1 (At) + -31 (At) + -41 (At) + 1 (At) + ... , (7.22) 

2. . . 5. 

where A is a square matrix and I is an identity matrix. With this informa-
tion in mind, attention is paid to the state Equation 7.4 

x(t) =A x(t) + B u(t) 

whose homogeneous form is 

or 

which gives 

~x(t) =A x(t) 
dl 

dx(t) =A x(t) dt, 

x(t)rwm = x(to) +A lot x(r)dr. 

(7.23) 

(7.24) 
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Since 2f(t) is on both sides of Equation 7.24, the equation is revolving about 
K( t) (disregard the subscript hom) resulting in an infinite power series as 
follows: 

x(t)hom = x(t0 ) +A 1t x(T)dT 

= x(to) +A ( x(ta) +A 1t x(T)dT) rlT 

=x(to)+A 1t (x(to)+A 1t [x(to)+A.{x(T)dT]dT ... )dT. 

Expansion of this series and simplification gives 

[ 1 21 31 4 ] x(t)hom = I+ At+ 21 (At) + 31 (At) + 41 (At) +...... x(t0 ). 

(7.25) 

As has been shown above, the bracketed power series represents a matrix 
exponential eAt, therefore, the homogeneous solution of this state equation 
can be written as 

(7.26) 

which is analogous to the scalar homogeneous solution shown before. 
The matrix exponential eAt is very important in control theory and is 

given a special name, the fundamental matrix, or, more commonly, the 
state-transition matrix expressed by 

<P(t) =eAt. (7.27) 

Physically, the state-transition matrix transforms the state from the given 
initial condition at t 0 to another condition at t in the absence of the control 
effort. It represents the natural dynamics or free response of the system 
excited by initial conditions only. Normally it is presented with the two 
time limits as <P(t, t 0 ), which indicates that it is transforming the system 
state at t 0 to another state at t, however, at this time it is sufficient to show 
it with only one time element as <P(t). 

The nonhomogeneous part is again obtained using the method of varia-
tion of parameters by letting 

x(t)nonhom = eAtC(t) (7.28) 
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so that 

2£(t)nonhom = AeAtc(t) + eAtc' (t), 

which, when used in the nonhomogeneous equation, gives the coefficient of 
the nonhomogeneous solution as 

C'(t) = e-AtBu(t) 

or 

Hence, the nonhomogeneous solution becomes 

x(t)nonhom =eAt lt e-ATBu(T)dT 

t eA(t-T)Bu(T)dT. 
./o 

(7.29) 

(7.30) 

As discussed earlier, the general solution ~(t) is a linear combination of the 
non homogeneous and the homogeneous solutions, thus 

(7.31) 

or by replacing eAt with <I>(t) Equation 7.31 becomes 

(7.32) 

The similarity with the scalar equation and this matrix solution can be 
seen here. 

Since Equation 7.22 for the state transition (fundamental matrix) is a 
sum of an infinite series, one can use it only by truncation after a number 
of terms to obtain just an approximation of the transition matrix. The 
exact computation of eAt can be time consuming, particularly if the di-
mension of A is very large. One of the simplest ways of computing 
is by diagonalization of matrix A so that eAt will also be diagonal. It is 
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known from linear algebra that if matrix A has real distinct eigenvalues, 
then there exists a transformation matrix P such that 

p-1AP=A. (7.33) 

A is called the modal matrix and satisfies the equation 

(7.34) 

where A;(A) i = 1, 2 · · n are the eigenvalues of A. Therefore, 

A= PAP- 1 (7.35) 

so that 

which by the definition in Equation 7.22, becomes 

(7.37) 

But since 

)" = (PAP- 1)(PAP- 1)(PAP- 1)... 1 ) 

= PA"P- 1 

then 

(7.38) 

where 

(7.39) 

This means 

(7.40) 

Now, if A is a diagonal matrix, it can be shown that eAt is also a diagonal 
matrix 

(7.111) 
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Example 7.3 Use the diagonalization method to determine the transition 
matrix for the system matrix A of 

[ 
6 -2 -7] 

A= -2 -3 2 
1 -2-2 

Solution 7.3 The eigenvalues for this matrix are -1, -3, 5, with corre-
sponding eigenvectors 

therefore, the diagonal matrix A is given by 

[-1 0 0] 
A= 0 -3 0 , 

0 0 5 

and the corresponding modal matrix P is given by 

[ 
1 1 -5] 

p = 01 1 
11 -1 

By using Equation 7.40 it follows that 

[ -~ (2e-6t _e-st_ 5) e5t -e-t + e-3t ~ (6e-6t _e-st_ 5) e5tl 
le-3t _ le5t e-3t _l.e-3t + l.e5t 
4 4 4 4 

-~ (2e-6t _e-st _ 1) e5t -e-t + e-3t ~ ( 6e-6t _e-st _ 1) e5t 

Due to the need to compute eigenvalues and eigenvectors, as well as 
the modal matrix and its inverse, the method described in the foregoing 
paragraph turns out to be inefficient also for large systems. 

The alternative approach is by using the Cayley-Hamilton theorem, which 
requires that every matrix satisfy its characteristic equation. That is, if the 
characteristic equation of an n x n matrix A is 

then 
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This theorem sets the maximum degree of a matrix polynomial, which is 
expected. A direct extension of this theorem gives the best alternative 
to the computation of eAt. This comes from the well known result of 
polynomials, which states that any polynomial P(x) can be expressed as a 
product of two polynomials J(x), q(x) and a remainder r(x). 

P(x) = f(x)q(x) + r(x) (7.43) 

where the degree of T(x) is such that 

deg [T(x)]:::; deg [f(x)]- 1. 

The polynomial q(x) is known as the quotient while the r(:r) is the re-
mainder. This method is known in mathematics as the quotient-remainder 
presentation of polynomials. 

If the eigenvalues of A are )11 , ,\2 , A3, · · · , An and its characteristic 
function is '1/J(.\), then any other polynomial in .A, say f(.\), can be expressed 
in terms of '1/J(,\) as 

j(.A) = '1/J(,\)q(,\) + T(.\), (7.44) 

where deg [r(.A)] :::; n- 1. Extending this equation to matrix polynomial 
J(A) gives 

f(A) = '1/J(A)q(A) + T(A). 

However, since '1/J(A) 0, then 

j(A) = r(A). 

This indicates that any matrix polynomial f(A) can be presented as a 
polynomial of, at most, order n - 1 

where the coefficients fJi must satisfy 

for each of the eigenvalues of Ai of A. 
Extension of this result to matrix exponential reduces the infinite series 

to a finite matrix polynomial 

(7.45) 

where the coefficients et; satisfy 

r(.A.i) = ao+a1.\i+a2.\T + a3,\T + · · · + O:n~l>-;'~ 1 . 
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If Ai is an eigenvalue of A, then 

and for cases where Ai has multiplicity k, k > 1, the following equations 
apply 

e>-.' = dr(.\) I 
d.\ >-.=>-., 

e;..' = d2r(;) I 
d.\ A=Ai 

This method is known as the Cayley Hamilton remainder technique. 

Example 7.4 Use the Cayley-Ham'ilton remainder technique to determine 
eAt if matrix A is given as 

[
0 1 0 l A= 0 -2 -5 . 
0 1 2 

Solution 7.4 This is a 3 x 3 matrix, therefore, n = 3, and, according to 
Equation 7.45, it can be expressed as 

eAt= aol+a1At+a2A2t2 

ao ta1 - 2t2a2 -St2a2 

0 ao- 2tal - t2a2 -5ta, ] , 

0 ta1 no+ 2tal - t2a 2 

and the coefficients must satisfy 

r(.\) = e;.. = ao + a1.\ + a2.\2 . 

For each eigenvalue .\ of A. The eigenvalues of At can be determined and 
are .\1 = 0, A2 = it, and ,\3 = -it where i = A, therefore, 

e0 = ao + a1 (0) + a2(0) 2 

eit = ao + a1 (it)+ a2(it) 2 

e-it = a 0 + a1 (-it) + n2 (-it? 
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which gives the solution as 

a 0 = 1, 
sin t 

a1 = -t-, 
1- cost 

t2 

Substituting these values in the matrix for eAt gives 

1 sin t - 2 + 2 cost -5 + 5 cost 

eAt = 0 -2 sin t + cost -5 sin t 

0 sin t 2 sin t +cost 

7.3.2 System Response by Laplace Transform Method 

The approach discussed in the preceding section is somewhat mechanical 
and is in some respect termed as the classical approach. The approach 
that is direct and simpler is that of using Laplace transforms. The Laplace 
transform of the system Equation 7.4 gives 

sx(s)-x(to) = Ax(s) + Bu(s). (7.46) 

This can be rearranged as 

(si- A)x(s) =x(to) + Bu(s) 

or 

x(s) = (sl- A)-1 x(t0 ) + (sl- A)- 1 Bu(s). (7.47) 

The matrix (si- A)- 1 is the system resolvent matrix defined in Equation 
7.8, which is a Laplace transform of the state-transition matrix <I>(t), 

<I>(s) = (si- A)-1 . 

Therefore, the inverse Laplace transform of resolvent matrix gives the state 
transition equation as 

<I>(t) = .c-1 [(sl- A)- 1]. (7.48) 

With this definition, the inverse Laplace transform of Equation 7.47 be-
comes 
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x(t) = <I>(t)x(t0 ) + _c- 1[(si- A)- 1Bu(s)]. (7.49) 

By the application of the convolution theorem on _c- 1[(si- A)- 1Bu(s)] 
results in the complete solution of the equation as 

(7.50) 

It can easily be seen how simple the Laplace transform approach is. Since 
the convolution theorem applies equally well to the two components of the 
convolution 

_c- 1[(sl- A)-1Bu(s)] = ( <I>(t- T)Bu(T)dT = ( <I>(T)Bu(t- T)dT . 
.fo .fo 

(7.51) 

The choice of which term between <I)(t) and u(t) should be subjected to a 
time delay in the integration depends on the overall computation advantage 
offered. 

Example 7"5 For the system described by the state-space equation 

r:h(t)l [o 1 o l [x1(t)l rol 
±2 (t) = 0 -2 -5 x2(t) + ll u(t) 

L ( t) 0 1 2 X3 ( t) Q j 

determine its resolvent matrix and the state-transition nw!ri:J: using the 
Laplace tmnsform. Compare the result with that obtained by using the Cay-
ley Hamilton remainder techniq1ie. If the initial state is 

determine the time response of the states to a step function u(t) = 2, and 
if the output equation is 

[xl(t)l 
y(t) = [11 o] x2(t) , 

X3(t) 

determine the output y(t) under these conditions. 

Solution 7"5 The Tesolvent matrix was defined in Equation 7.8 as 

<I>(s) = (si- A)- 1 . 
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Therefore, for this system, 

<]) ( s) = [ ~; 8 ~\ ~ ]-
1 

0 -1 8- 2 

1 s-2 5 

s s (82 + 1) s (s2 + 1) 

0 
s-2 5 

---
s2 + 1 s2 + 1 

0 
1 s+2 

s2 + 1 s2 + 1 

From the resol'uent matrix, the state-transition matrix can be determined 
using equation7.48 as 

where 

£-1[~]=1 

£_ 1 [ s-2 ] = £_ 1 [-~s + 
s (s2 + 1) 

2s 1 J + 1 + 82 + 1 = -2 + 2 cost + sin t 

-1 { 5 } -1 [ 5 8 ] .C - ( 2 ) = £ -- +5-2-- = -5 + 5 cos L s8+1 s s+1 

J.., . J.., = cos t - 2 sin t r-1 [-8.-2 J _ r-1 [ S 2 l 
8~ + 1 - s2 + 1 - s2 + 1 

£- 1 [ 5 ] = -5 sin t 
s 2 + 1 

£- 1 [ 1 ] = sin t 
s2 + 1 

J.., - + -- =cost+ 2sint. r-1 [-s + 2 J c-1 [ 8 2 ] 
s2 + 1 - · 8 2 + 1 8 2 + 1 
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Therefore, the state-transition matrix becomes 

-2 + 2 cos t + sin t -5 + 5 cost 

cost- 2 sin t -5 sin t 

0 sin t cost+ 2 sin t 

As can be seen, this state-trans'it'ion matrix is the same as that which was 
obtained in the previmts example. The free response of the system (homo-
geneous solution) for the given initial condition is given as 

x(t) = eAtx(O). 

This means 

1 -2 + 2 cost + sin t -5 + 5cost 

[ x,(t) l x2(t) 0 cost- 2 sin t -5 sin t 
X3(t) hom 

0 sin t cost+ 2 sin t 

[ 
-8 + lOcost l 

-lOsint , 
2 cos t + 4 sin t 

and the nonhomogeneous solution is given by 

where for the step input u( t) = 2 it follows that u( s) = ~. 
s 

m 
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TherejoTe, the following expression is obtained, 
1 s - 2 5 
s s ( s2 + 1) s ( s2 + 1) 

s-2 5 
(si- A)~ 1 Bu(s) = 0 

s2 + 1 - s 2 + 1 

0 
1 

s2 + 1 

2 s- 2 

s 2 s 2 + 1 

s-2 
2s(s2 +1) 

2 

s+2 
s2 + 1 

Thus, the time response becomes 

[
xl(t)l 
x2(t) 
X3 ( t) nonhom 

c_~l [ 2 s- 2 ] 
s 2 s 2 + 1 

c_~l [2 s- 2 ] 
s (s2 + 1) 

£ 1 [s(s2
2+ 1)] 

[ 
2 - 4t - 2 cost + 2 sin t l 

-4+2sint+4cost . 
2- 2cost 

Therefore, the time response 

x(t) = x(thom + x(t)nonhom 

becomes 

[ 
-8 + 10 cost l [ 2 - 4t - 2 cost + 2 sin t l 

-10 sin t + -4 + 2 sin t + 4 cost 
2 cost + 4 sin t 2 - 2 cost 

[ 
-6 + 8 cost- 4t + 2 sin tl 

-8 sin t - 4 + 4 cost . 
4sint + 2 



State Space Design Methods 

The output y(t) is measured through the output matrix as 

[ 
-6 + 8 cost - 4t + 2 sin t l 

= [ 1 1 0 J -8sin t- 4 + 4 cost 
4sint + 2 

= -10 + 12cost- 4t- 6sint. 

7.4 System Controllability and Observability 

7 .4.1 Controllability 
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For a given system presentation using matrices A and B, the effect of the 
control input to the system states is given by its controllability property. 
The system configuration (A, B) is said to be controllable if every uncon-
strained control input u(t) can affect the system state 2£(t0 ) so as to place 
it at another location 2f(tl). Otherwise, if the matrices A and B are such 
that the control input u(t) has no effect on the system states ~(t), then 
this system is said to be uncontrollable. Since, as it will be seen later, the 
same input-output relationship of the system can be shown to have many 
different presentations in state-space form, the system controllability turns 
out to be a property of the system presentation (configuration) rather than 
a property of the system itself. Controllability is one of the most important 
properties that must be ensured before any attempt in controller design is 
done. 

System controllability is associated with the controllability grammian 
matrix M defined as 

M =it ci>(T)BBT<PT(T)dT. 
() 

(7.52) 

The system is said to be controllable if this matrix M is positive definite 
and non-singular. For the development of complete controllability of a 
linear time-invariant system, use is made of the nonhomogeneous part of 
its time response which must drive the system response state 2f(t) to zero 
from some initial state 2£(0). Now, as has been shown in Equation 7.50, the 
time response of the system is 
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2f(t) = ~(t)2f(0) + lt ~(t- T)Bu(t)dT, 

where the nonhomogeneous part is given in Equation 7.30 as 

If the system time response is to be zero by the presence of the nonhomo-
geneous response, then 

0 = ~(t)2f(O) + lt ~(t- T)Bu(t)dT 

= eAt;?f(O) + {t eA(t-T)Bu(t)dT 
./o 

= eAt[2f(0) + lt e-ATB7~(t)dT], (7.53) 

establishment of the controllability property is done through expressing the 
initial state as a function of the control input u(t). From Equation 7.53 it 
follows that 

(7.54) 

The matrix exponential e-AT can be expressed in an infinite power series 
form as 

However, using Cayley-Hamilton theorem, it can also be expressed as a 
malrix polynomial with at most (n- 1) power terms so that 

where r; are scalar functions ofT and eigenvalues of A. If this expansion 
is used in the above expression for -;?f(O) it yields 
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-x(O) = 1\roi + r1A + r2A2 + r3A3 + r4A 4 + · .. + rn-lA"-1]Bu(t)dT 

Vo (T) 
VJ (T) t V2 (T) 

= [B :AB; A2B :A3B :A4B : · · · :An-lB] Jo v3 (T) dT 

Vn-1 (T) 

= c / V(T)dT, 

where V(T) is a vector of vi(T) = ri(T)u(T). The matrix Cis ann x mn 
matrix called the system controllability matrix given by 

(7.55) 

For the system to be controllable, this matrix must be a full row rank 
matrix, however for SISO systems, it is sufficient to observe that the matrix 
C is a square n x n and for it to be full row rank it must also be non-singular 
with a non-zero determinant such that 

det ICI =f. 0. (7.56) 

Essentially, the controllability is an indication that there are no pole-zero 
cancellations in the transfer function. Another test for the system con-
trollability may be by direct observation in the signal flow chart. For a 
controllable system configuration, its control signal u( t) is linked to all the 
system states ~( t) in the signal flow chart as shown in Figure 7.2. 

In MATLAB the system controllability matrix can be constructed by 
command "ctrb(A,B)" which returns the controllability matrix C. Also the 
system controllability can be established by examination of its controlla-
bility grammian as seen before. This is accomplished in MATLAB by the 
command "gram(A,B)" which constructs the controllability grammian JVI 
of Equation 7.52. The syntax for the gram command is 

M = gram(A, B). (7.57) 

Example 7.6 The input and the plant matrices for a certain system are 

[2 3 0] 
A= 3 55 

436 
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FIGURE 7.2 
The Signal Flow Graph of a Controllable System 

Establish whether the system is controllable. Confirm the results using 
MATLAB. 

Solution 7.6 The system controllability matrix (given in Equation 7.55) 
is given by 

C=[B :AB :A2B J 

where 

B= m 
[2 3 0] m AB = 3 55 
436 

[120] = 44.0 . 
48.0 



State Space Design Methods 

A 2B = A(AB) = 3 55 44.0 [
2 3 0] [ 12.0] 

4 3 6 48.0 

[
156.0] 

= 496.0 
468.0 

Therefore, the controllab-ility matrix C becomes 

[
3 12 156] c = 2 44 496 ' 
5 48 468 
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from which it follows that it has full rank 3 and is non-singv,lar with deter-
minant /CI = -10 464. There! ore, the system is contmllable. 

In MATLAB the controllability matrix could be formed through the fol-
lowing code with the same re!:>ults 

A={2 3 0;3 5 5;4 3 6}; 
8={3;2;5}; 

Co=ctrb(A,8) 
result=det( Co). 

Alternatively, one could establish the controllability gmmmian and find 
out if it has full Tank by checking whether it has a deteTminant. 

A={2 3 0;3 5 5;4 3 6}; 
8={32-51· 1 J 'jl 

M=gram{A,8) 
result=det(M). 

Example 7.7 Consider a system 

x(t) = Ax(t) + Bu(t) 

If the matrices A and B aTe known to be 

[
-2 0 0 l 

A= 0 0 1 
0 -3-3 

determine the contTollability matr-ix: and gmrnmian and establish whether-
this system is controllable. The r-esults of the computation can be confirmed 
by using MATLAB. 

Solution 7. 7 For the given 3 x 3 matrix system, the controllability matr-ix 
is given by 
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Using the same procedures as in the previous example, the controllability 
matrix is obtained as 

[
0 0 0 l c = 1 1 -6 . 
1 -6 15 

Clearly, it follows that the first row of the controllability matrix contains 
zeros only, which is an indication that the matrix is singular, and hence the 
system is uncontrollable. It can be seen that the determinant of C is zero. 

To establish the controllability grammian the state-transition matrix <I>(t) 
for the system is required, which can be calculated using any of the methods 
discussed before. Unfortunately, the transition matrix for this problem has 
elements made of very long exponential terms that are not shown here. 
However, multiplication of this transition matrix with B gives 

""(t)B = 1 _J.t-litv'3 + 5. _J.t-litv'3 1')3 O 5 · _J.t+litv'3 1')3 + 1 _J.t+.litv'31 '*' 2e 2 2 6ze 2 2 v .:> - 6ze 2 2 v .:> 2e 2 2 

1 _J.t-.litv'3 3. _J.t-.litv'3 1')3 + 3. _J.t+.litv'3 1')3 + 1 _J.t+.litv'3 
2e 2 2 - 2ze 2 2 v .:> 2ze 2 2 v .:> 2e 2 2 

Without going further (of course because of the length of the result), one 
could see right from here that due to the zero element in the first entry, 
then matrix <I>(t)BBT <I>(t)T will have the following form · 

<I>(t)BBT <I>(tf = [~ ~ ~] , 
0** 

where (*) indicates the non-zero entries. This indicates that the controlla-
bility grammian is singular and hence, the system is uncontrollable. {The 
complete evaluation of the controllability grammian and verification of the 
results is left to the reader as a special exercise) 

7.4.2 Observability 
System observability is another property of interest in the state-space 

control design. Like controllability, this property has nothing to do with 
the system as a whole but rather with the system presentation. The system 
is said to be observable if the output has all the components of the state. 
In this case, it becomes possible to estimate the system states from the 
output measurements. For linear time-invariant systems, the observability 
property is governed by the observability grammian matrix N. It must 
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be non-singular, i.e., it should be invertible. To get a clear picture of 
this situation, consider a system whose state-space output equation in the 
absence of feed- through is 

y(t) = Cx(t), (7.58) 

where the homogeneous response of this system is 

x(t) = <I>(t)x(t 0 ). (7.59) 

These two equations can be combined to give 

y(t) = C<I>(t)x(t0 ). (7.60) 

Now if C<I>(t) were invertible, one could easily get x(to) from the output 
and hence the system states in Equation 7.59 so that the system would 
be observable. However, this is not normally the case, as matrix C<I>(t) is 
not necessarily a square matrix, e.g., for a SISO system it is a row matrix. 
Therefore, the procedure to determine the system observability goes on by 
some mathematical manipulation of pre-multiplying both sides of Equa.tion 
7.60 by <I>T(t)CT and integrating as 

which gives the observability gramrnian as 

(7.61) 

so that 

(7.62) 

Therefore, x(ta) can be determined from the output measurements y(t) as 

(7.63) 

which requires that the controllability grammian N(t) must be invertible 
and hence non-singular. 
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For LTI systems, which are the main subject of this discussion, the most 
direct and sufficient test for system observability is given by the observ-
ability matrix. The observability matrix can best be derived using MIMO 
models. However, c;ince the concern has been about SISO syc;tems, the fol-
lowing approach is adopted which leads to same conclusion. It has been 
shown that in Equation 7.60 

y(t) = C<I>(t)x(t 0 ) (7.64) 

where 

1 1 1 
<I>(t) =eAt= I+ At+ -A2t 2 + -A3 t3 +-A 4t 4 + · · · 

2 3! 4! 

which according to Cayley-Hamilton theorem, can be shown to be 

where ri are some coefficients that are functions of time. When used in the 
output Equation 7.64 it gives 

This is can be expressed as 

n-1 

y(t) = L riCAix(t0 ). 

i=O 

The row vector I: r;CAi can be written as 

c 
CA 

i=n-1 CA2 L r;CAi = [r-o rl 7"2 7"3 ...••• Tn-l] CA3 
i=O 

=rO 

so that 
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y = rOx(ta), 

where r and x(ta) are n-row and n-column vectors respectively while 0 is 
a n x n matrix called the observability matrix of the system in Equations 
7.3 and 7.4. Normally for MIMO systems 0 is au TL x n matrix. 

c 
CA 
CA2 

0= CA3 (7.65) 

CAn-l 

The system is said to be observable if the observability matrix has a 
column rank n, and for linear SISO systems, it suffices to observe that this 
observability matrix will be non-singular and hence 

det 101 =J. 0. (7.66) 

In the corresponding signal flow chart, the output needs to be linked to all 
the system states as shown in Figure 7.3 

In MATLAB, the observability matrix of a system is established by com-
mand "obsv(A,C)" where C is the output matrix. Its syntax is 

Ob = obsv(A, C). 

Another command to establish observability of the system is from its gram-
mian as discussed before. In MATLAB, the observability grammian is es-
tablished by the command "gram(A',C')." Note that, although the same 
gram command is used for establishing the controllability grammian, the 
difference in the result lies in the input argumcntfl. While, on testing the 
system controllability, the input arguments were the system matrix A as 
well as the input matrix B, when this command is used for establishing the 
observability grammian, the input arguments become the transpose of the 
system matrix as well as the transpose of the output matrix, i.e., AT and 
cT respectively. In this way, it returns the system observability grammian 
given in Equation 7.61. The syntax for the gram command is 

N = gram(A', C') 

Example 7.8 If the output Tnatrix C in the previov.s example is 

C=[l 2 1], 
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u 

FIGURE 7.3 
The Signal Flow Chart for an Observable System 

establish the observability of th·is system. Remember that 

[2 3 0] 
A= 355 , 

436 

Solution 7.8 The system observability matri:J; was given ·in Equation 1. 65, 
which for the system in question becomes 

Now given that 

C=[l21] 
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then 

and 

[2 3 0] 
CA=[121] 355 

436 

= [ 12 16 16] 

CA2 = (CA)A = [12 16 16) [~ ~ ~] 
436 

= [ 136 164 176] . 

Then:foTe, the obsenwbility matTix becomes 

[ 
1 2 1 l 0 = 12 16 16 , 

136 164 176 
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which has full mnk 3 and hence is non-singulaT with determinant 101=112. 
Therefore, the system is observable. The corresponding MATLAB code is 

A={2 3 0;3 5 5;4 3 6}; 
8={12-1 ]· ' ' ' 
Oo=obsv( A, C) 
so/ution=det(Oo ); 

AlteTrw.hvely, one could establish the obseTvabildy gmmmian as 
N=gram(A',C) 
so/ution=det(N ); 

Example 7.9 E:ramine the obseTvability of a system whose plant and out-
put matrices A and C are 

A=[~~] C=[12]. 

Also determine the system obseTvability grammian and establish the observ-
ability by examining this grammian 

Solution 7.9 For this 2 x 2 system, the observability matTix is constructed 
as follows 
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The determinant is found to be [10- 5(2)] = 0. Clearly, this system observ-
ability matri:J; is singular and hence, the system is unobservable. 

To get the observability grammian, one needs to know its state-transition 
matrix, which can be determined using either of the methods discussed ear-
lier and is 

therefore, for a given C 

so that 

= [ 1 2 ] lOt 
2 4 e · 

Thus, the observability grammian becomes 

N(t) = .{ <I>(rfCTC<P(r)dr 

[; ~]lot elOTdT 

1 2 
10 10 

2 4 
10 10 

(elot- 1). 

Again, the observability grammian of this system is singular wdh determi-
nant 0. This conforms with the results in the previous part, which indicates 
the system ·is unobservable. 
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7.5 Similarity Transformations: Canonical Forms 
7.5.1 Similarity Transformation 

509 

The state-space description of a system can be expressed using another 
variable without losing the system input-output relationship. This transfor-
mation involves redefinition of the state variables, and the system matrices 
leaving the control as well as the output signal unaltered. It can be eas-
ily observed that, since this transformation involves the system matrices 
and states only, preserving the input-output relationship of the system, the 
system properties such as the transfer function, poles, zeros, and the char-
acteristic equation remain unchanged. Such transformation is known as the 
similarity transformation and requires pre-definition of the state transfor-
mation matrix P, which transforms any other state variable z(t) to x(t) 

x(t) = P£(t), (7.67) 

so that 

x(t) = P~(t). 

Under similarity transformation, the transformed dynamic state Equa-
tions 7.:3 and 7.4 become 

P~(t) = AP£(t) + Bu(t) 
y(t) = CP£(t) + Du(t), 

which can be rearranged as 

~(t) = p-l AP£(t) + p-1Bu(t) 

y(t) = CP£(t) + nu(t). 

(7.68) 

(7.69) 

(7.70) 

(7. 71) 

This state-space dynamic equation can be simplified by redefining the tram>-
formed system matrices as 

A*= p- 1AP 
B* = p-lB 
C* =CP 

D* =D 

(7.72) 

(7.73) 

(7.74) 

(7.75) 
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and hence giving a system of the following form 

2!(t) = A*~(t) + B*u(t) 
y(t) = C*~(t) + 

(7. 76) 

(7.77) 

As stated before, since the dynamics of the system arc preserved by sim-
ilarity transformation, the eigenvalues, eigenvectors, poles, zeros, and the 
system characteristic equation are all prc;;erved. Using such transformation, 
several forms of state descriptions of the system can be defined, known as 
canonical form, as given in the next sections. Knowing the transformation 
matrix P, the similarity transformation can be carried out in MATLAB 
using the command "ss2ss" and its syntax is 

[At, Bt, Ct, Dt] ss2ss(A, B, C, D, P). 

However, for some of the special canonical forms discusOiccl in the following 
sections where the transformation matrices are well established, special 
commands besides the "ss2ss" do exist, as will be 11een next. However, for 
some other forms, it remains for the user to determine the transformation 
matrix P in advance and use the "ss2ss" command. 

7.5.2 Controllable Canonical Form 

Controllable canonical form is a system description in which all states 
can be modified by the control input. This form is very convenient in the 
design of the system controllers. For any given system presentation A, B, 
C and D, the similarity transformation matrix P, which puts the system 
in controllable canonical form, is given as a product of the controllability 
matrix C 

and the triangular matrix Q of coefficients of the characteristic equation. 
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where Q is an upper triangular matrix given by 

a2 a3 a4 ... an-1 an 1 
a3 a4 an-1 an 1 0 

a4 an-l an 1 0 0 

Q= Un-1 an 1 0 0 (7.78) 

an-1 an 1 0 0 0 
an 1 0 0 0 0 
1 0 0 0 0 0 

so that 

P=CQ. (7.79) 

The transformed system will then be in controllable canonical form in 
which 

0 0 0 0 0 

() 0 1 0 0 0 

0 0 0 1 0 0 

A*= p-1AP = (7.80) 

0 0 0 0 1 0 

0 0 0 0 0 1 

-a1 -a2 -a3 -a4 -an-1 -an 

Other system matrices will be transformed according to Equations 7.72 
through to Equation 7.75, and the states are transformed according to 
Equation 7.67. Important to note is that for SISO systems the input matrix 
B* in controllable canonical form gets the following form. 

0 
0 

B* = 0 

1 

while the output matrix C* becomes 

(7.81) 
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FIGURE 7.4 
System in Controllable Canonical Form 

(7.82) 

The signal flow chart and the block diagram corresponding to the control-
lable canonical form are given in Figure 7.2 and Figure 7.4 respectively. It 
can easily be seen from these figures that the control signal u( t) has some 
effect to each of the system states Xi and hence, the meaning of controlla-
bility. 

In MATLAB, there is no direct command for transformation of a system 
to controllable canonical form as discussed here. However, a number of 
tools are available in MATLAB and their combination can lead to system 
controllable canonical form. This includes the matrix manipulation power 
of MATLAB as well as other computational tools. The other tools available 
include the "canon" command. This command in companion form returns 
the system matrix into companion (observable) canonical form whose trans-
pose is the controllable canonical form. Also the "ctrbf" command returns 
a decomposition of the system matrices into the controllable and uncontrol-
lable subspaces. it is highly recommended to consult the MATLAB users 
manual on the use of thn "canon" and the "ctrbf" commands for the system 
transformation to controllable canonical form. 

Example 7.10 The coefficient matrices of the state eq1wtions in the dy-
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namic system given by Equation 7.4 are 

[
1 2 2] 

A= 14 3 
3 1 3 

C=(211]. 

Transform the system to state contTOllable canonical form. 

Solution 7.10 The characteristic equation of A is 

s -1 -2 -2 
!si-Al= -1 s-4 -3 

-3 -1 s-3 

s3 - 8s2 + 8s + 1. 
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Thus the coefficients of the characteristic equation are a, = 1, a2 = 8, 
and a3 = -8. The matrix of the coefficients is 

Q = -8 1 0 . [ 8 -8 1] 
1 0 0 

The controllability matrix of the system is 

= 0 4 37 . [ 1 3 23] 
1 6 31 

Therefore, from Equation 7. 79 the transformation matrix P becomes 

P=CQ 

[ ~~~~] [!18 ~8~] 
1 6 31 0 0 

[ 
7.0 -5.0 1.0] 
5.0 4.0 0 . 

-9.0 -2.0 1.0 

Thus, from Equations 7. 72 thrmLgh to 7. 75 the tr-ansformed matrices A*, 
B* and C* can be obtained for the controllable canonical form. This is left 
as an exercise for the reader. 



514 Design and Analysis of Control Systems 

7.5.3 Observable Canonical Form 

This is a form of system presentation in which the system is completely 
observable as defined in the preceding sections. The similarity transforma-
tion matrix that brings the system in observable canonical form is given as 
the inverse of the product of the characteristic coefficients matrix Q and the 
observability matrix 0, both of which have been defined in the preceding 
sections with 

c 
CA 
CA2 

0= CA3 

CA(n-2) 

CA(n-1) 

and 

a2 a3 a4 ... an-1 an 1 
a3 a4 an-1 an 1 0 

a4 an-1 an 1 0 0 

Q= an-1 an 1 0 0 

an-1 an 1 0 0 0 
an 1 0 0 0 0 
1 0 0 0 0 0 

The observable canonical form transformation matrix is then given as 

p = (Q0)-1. (7.83) 

Hence, the transformed system can be deduced using the previous trans-
formation formulae. Of interest can be the plant matrix A* = p- 1 AP, 
which takes the following general form 
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0 0 0 0 0 -a1 

1 0 0 0 0 -a2 

0 1 0 0 0 -a3 

A*= p- 1AP = (7.84) 

0 0 1 0 0 -an-2 

0 0 0 1 0 -an-1 

0 0 0 0 1 -an 

The in put matrix becomes 

bl 
b2 

B* = p-1B = b3 (7.85) 

bn 

and the output matrix becomes 

C= [00··· l l . (7.86) 

The corretJponding signal flow chart and block diagram for observable 
canonical form are given in Figure 7.3 and Figure 7.5 respectively. Note 
that in these diagrams, the output y(t) is connected to each of the sys-
tem states, which makes it possible to estimate the system states from the 
output measurements 

Example 7.11 Transform the system 

'if= Ax+Bu 
y=Cx 

into observable canonical form, given that the system matrices are 

[1 2 2] 
A= 14 3 

3 1 3 
C=[211). 

Solution 7.11 The observability matrix for this system is 

[ 
2 1 1 l 0 = 6 9 10 . 

45 58 69 
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u 
--,-~------- -~-,------------,· 

T 
®-0-----~®-&@-

FIGURE 7.5 
System in Observable Canonical Form 

From the previous example, for this system 

[ 8 -8 1] Q = -8 1 0 . 
1 0 0 

Thus the observable transformation matrix P is 

p = (Q0)-1 

1 3 9 
61 61 61 

14 19 4 
-- --

61 61 61 

12 25 47 - -
61 61 61 
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Thus, the observable canonical form becomes 

A*=P- 1AP 

[0 0 -1] 
= 10-8 

0 1 8 

w ~ [ ~~] 
C* = [ 0 0 1 J. 

Example 7.12 In this example, the objective is to denwnstmte the effect 
of trying to transform a system to observable canonical form. Consider the 
system 

A= U~J 
which has been identified before as unobservable. 

Solution 7.12 The characteristic equation of A is 

so that 

Q = [ ~6 ~] 
The observability has been determined before and is given by 

0=[;120]' 

therefore, the observable transformation matrix becomes 

P = (Qo)-1 

= ( [ ~6 ~] [ ~ 120]) -1 

= [ ~1 -;2rl 
From here it ·is clear that the matrix QO is singular, therefore, it is not 
invertible, ·i'IL which case no transformation matrix P for observable canon-
ical form can be formed. This is the reason that the system is said to be 
unobservable. 
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7.5.4 Diagonal Canonical Form 

Diagonal canonical form, also known as modal canonical form, plays an 
important role in the analysis of MIMO systems, where decoupling of the 
states becomes very crucial. Under diagonal canonical forms, the trans-
formed plant matrix is a diagonal one, with the diagonal elements corre-
sponding to the eigenvalues of the plant matrix. It can be seen that if the 
plant matrix has n distinct eigenvalues Ai (i =1, 2 .. n) so that each eigen-
value has a distinct eigenvector Yi, then the transformation matrix P is the 
augmented matrix of the distinct eigenvectors, also known as the modal 
matrix, for that particular system. 

(7.87) 

If, however, the system is already in the controllable canonical form with 
known eigenvalues Ai (i =1, 2 .. n), the transformation matrix P can be 
derived to be the Vandermonde matrix, which is formed by powers of the 
eigenvalues. 

1 1 1 1 
AI A2 A3 An 
A2 A2 A2 A2 

P= 1 2 3 n (7.88) 
Ai A3 A3 A3 2 3 n 

An-1 An-1 An-1 1 2 3 ... An-1 
n 

so that the transformed system takes on matrices as given in equations. 

Example 7.13 The following system 

x(t) = Ax(t) + Bu(t) 

the plant matrix A is given as 

A= 0 0 1 [ 
0 1 0 l 

-6-11 -6 

Find the transformation matrix P, which will transform it to diagonal 
canonical form. If the input matrix is 

find the corresponding input matrix in diagonal canonical form. 
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Solution 7.13 The given system matrix is already in controllable canonical 
form, therefore, to transform it to diagonal canonical form, the transforma-
tion matrix must be the Vandermonde matrix, which requires prior knowl-
edge of the system eigenvalues. For the system matrix A, the eigenvalues 
are computed from its characteristic equation 

s -1 0 
lsi- AI= 0 s -1 

611s+6 

= s3 + 6s2 + lls + 6 

= (s+3)(s+2)(s+1). 

Therefore, the eigenvalues are )\l = -1, .A.2 = -2, A3 = -3, so, according to 
equation 7. 88, the Vandermonde matrix is 

This transforms the system to diagonal canonical form according to Equa-
tions 7. 72 through to 7. 75 as 

A*= p- 1AP 

[ 
1 1 1 l-l [ 0 1 0 l -1 -2 -3 0 0 1 
1 4 9 -6 -11 -6 

[ 
1 1 1 l -1 -2 -3 
1 4 9 

[ ~1 ~2 ~ ]· 
0 0 -3 

Also the input matrix B transforms to 

B* = p-1 B 

[~~~2~3r m 
~ [ {~] 
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7.5.5 Jordan Canonical Form 

This is an alternative to the diagonal canonical form for unsymmetrical 
systems with multiple order eigenvalues for which diagonal transformation 
is not possible. The Jordan canonical form (JCF) is a block diagonal matrix 
in which each n x n diagonal block matrix corresponds to n-multiplicity 
eigenvalues. The main diagonal elements of the JCF are the eigenvalues 
(with their multiplicities) and for the repeated eigenvalues the entry above 
the main diagonal is a 1 and the rest are Os. A typical structure of the 
Jordan canonical form is 

)q 1 0 

0 )q 1 0 

0 0 AI 0 

0 : .A2 

(7.89) 
A3 1 0 

0 0 .A3 

0 

The transformation to Jordan canonical form is done by a matrix that is 
formed by augmentation of the system of generalized eigenvectors: PI, p 2 , 

P3...... Pn so that 

T = [PI P2 P3 Pn]· (7.90) 

Since the idea of generalized eigenvectors can be confusing, it is worth 
recalling some ideas from linear algebra here. It is known that if A is n x 
n matrix with n eigenvalues Ai, i = 1, 2, 3 ... n, its non-zero eigenvectors 
Pi must satisfy the equation · 
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(,>..J- A)pi = 0. (7.91) 

This results in n-eigenvectors, each corresponding to one eigenvalue. If, 
however, A has multiple order eigenvalues and is non-symmetric, not all 
the eigenvectors will be found by Equation 7.91 above. This equation will 
result in eigenvectors that are less in numbers than n, which is required for 
the matrix of order n like A. The remaining eigenvectors corresponding to 
each AJ of m-order multiplicity are found by using the rn - 1 generalized 
eigenvector equations 

q = 1, 2, ... (m- 1). (7.92) 

For q = 1, the normal Equation 7.91 holds. 

7.6 Transfer Function Decomposition 

When a transfer function is given in the classical rational form, one may 
wish to decompose it to one of the state-space canonical forms without 
having to go back lo the time domain. Three decomposition approaches 
are possible, all of which require the preparation of the signal flow charts 
depending on how the transfer function is given. These are direct decom-
position, cascade decomposition, and parallel decomposition. This section 
will present the principles of these decomposition methods. 

7.6.1 Direct Decomposition 

Direct decomposition takes advantage of the fact that the coefficients of 
the numerator and denominator of the transfer function can by inspection 
be used to form the observable or controllable canonical form. The method 
constructs the signal flow chart from the transfer function from which the 
appropriate canonical form can be extracted. The method for constructing 
the signal flow chart from the transfer function for the controllable canonical 
form differs from that of the observable canonical form. The two methods 
are discussed here. 

7.6.1.1 Direct Decomposition to Controllable Canonical Form 

For a transfer function 

G(s) = Y(s) = N(s) 
U(s) D(s) 
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this goes through four stages as: 
(1) Express G(8) in negative powers of 8 by multiplying numerator and 

denominator by 8-n 

Y(8) N(8)8-n 
U(8) D(8)8-n 

(2) Multiply N(s) and D(s) by a dummy variable x(s) representing the 
state variables. 

Y(s) N(8)8-nx(s) 
U(s) D(s)8-nX(8) 

(3) Equate the numerator and denominator of both sides thereby forming 
two equations. 

Y(8)D(8)8-nX(8) = U(s)N(8)8-nX(8) 

(4) Construct the signal flow chart using the two equations by forming 
states using 

Xi= 8-ix(8) where i = 1, 2, .. , n 

7.6.1.2 Direct Decomposition to Observable Canonical Form 

This goes through three stages as: 
(1) Express G(s) in negative powers of 8. 

Y(8) N(s)8-n 
U(8) D(8)s-n 

(2) Cross-multiply N(8) and D(8) by u(8) and y(8) respectively, and 
express y(8) in terms of ascending negative powers of s, y(8) itself and 
u(8). 

(3) Draw the corresponding signal flow chart. 
Cascade decomposition is a special form of direct decomposition that 

applies to a transfer function presented in the pole-zero form. A separate 
signal flow chart is made for each factor of the p-z transfer function and 
then connected in cascade to complete the signal flow chart for the whole 
system. Parallel decomposition applies when the transfer function is ex-
pressed as a sum of its partial fractions. As such, it can be applied to 
any system for which the denominator of the transfer function has been 
factored. A separate signal flow graph is made for each of the partial frac-
tions. The overall signal flow graph for the system is a parallel combination 
of the individual signal flow graphs for the partia.l fractions. 
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FIGURE 7.6 
Block Diagram for The State Feedback Control 

7. 7 Full State Feedback Control 

State feedback control has been widely applied in most control systems 
not only because of its simplicity, but also its flexibility in handling sys-
tem dynamics for disturbance rejection and stability characteristics. Under 
state feedback control, the control action is achieved by feeding back a lin-
ear combination of the system c:tates to the reference input r(t.) through a 
feedback matrix K, as shown in Fig 7.6 to produce the control input u(t). 
In this way, the control signal u( t) becomes 

u(t) = -Kx(t) + r(t). (7.93) 

For the case of regulators where r(t) = 0, the control signal will be 

u(t) = -Kx(t). (7.94) 

Full state feedback control scheme assumes that all the system states Xi ( t) 
in the state vector 2£(t) are available for feedback. However, in real practice, 
it may not be possible to have all the system states because of either the 
large quantity or the cost of sensors that would be needed to measure all 
the system states. Some of these states might require costly and speciali~ed 
sensors. Even when all states are available for measurement and there is 
still' the problem of measurement noise. Furthermore, in some cases, it is 
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FIGURE 7.7 
Combined Estimator and Control Law in Full State Feedback 
Control 

desirable to do state transformations to enable design insights, but the new 
states may have no physical meaning and hence they cannot be measured. 
All these issues lead to the idea of state estimation in which the whole state 
vector can be estimated using data which is obtained from measurements 
of only a few states of the state vector or more usually from the output. 
As such, the control design is normally carried out in two stages. 

(a) Control law design, which assumes that all states of the system are 
available for feedback 

(b) Observer (or estimator) design, which estimates the entire state vector 
from measurements of the portion of the state vector from 

y(t) = Cx(t) + D(u). 

Together, the estimator and the control provide the full state feedback 
control and the structure for such control is shown in Figure 7.7. 

This section addresses the first stage of the full state feedback control 
design with the assumption that the entire state vector is available for 
feedback. Estimator design will be discussed in later sections. With the 
control input u(t) given by Equation 7.93, the state equation of the system 
in the closed-loop becomes 

x(t) = Ax(t) + B[-Kx(t) + r(t)] 
=(A- BK)x(t) + Br(t). (7.95) 

If the system is completely controllable, then the feedback matrix K exists 
for which the characteristic equation of the closed-loop system becomes 
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jsi- A+ BKI = 0. (7.96) 

(recall Equation 7.10) The task of the control design becomes that of deter-
mining the elements of matrix K. The most popular design technique for 
determination of K for SISO systems is the pole placement method, which 
is discussed in the next section. It should be noted that for SISO systems 
B is a column vector while K is a row vector, therefore, the product BK 
is an outer product of vectors B and K, which result in a matrix so that 
matrix algebra rules are still observed in Equations 7.95 and 7.96. 

7. 7.1 Pole Placement Design Method 

Pole placement is a method that seeks to place the poles of the closed-
loop system at Home predetermined locations. Although this method has 
some drawbacks in handling complex systems, it is still fairly sufficient 
for most small control systems and it gives the best introduction to the 
design of complex systems. The basic concept behind the method is to get 
K, which will satisfy the closed-loop transfer function in Equation 7.96 at 
desired pole locations si, i = 1, 2, · · · n. Implementation of the method 
will be described here, through the following illustrative example in which 
a regulator is assumed, i.e., no reference input. (The reference input will 
be added after some discussion on the state estimators). 

Suppose the system 

'ii(l) = Ax(t) + Bu(t) 

is to be controlled by full state feedback such that 

v.(t) = -Kx(t), 

where the closed-loop poles are placed at locations P1, P2, P3, .. .. . Pn. 
This means that the required closed-loop transfer function of the controlled 
system is given by 

'lj;(s) = (s- pl)(s- P2)(s- P3) .. · (s- p.,) = 0, (7.97) 

which can be expanded as 

(7.98) 
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Let the system matrix A and the input matrix B, respectively, be 

a11 a12 a1n 
a21 a22 a2n 

A a31 a31 a3n 

anl an2 · · · ann 

Therefore, if the feedback matrix K is 

then the closed-loop system has the following system matrix 

a11 - b1k1 a12- b1k2 
a21 - b2k1 a22- b2k2 

A - BK = o21 - b2k1 a32 - b3k2 

whose characteristic function is 

1/J(s) =I si-A+BK I 
s-an +b1k1 -a12+b1k2 
-a21 +b2k1 s- a22+b2k2 · · · 
-a21 +b2k1 -a32+b3k2 

= 0. 

aln - blkn 
a2n - b2kn 
a:.ln- b3kn 

-a1n+b1kn 
-a2n+b2kn 
-a3n+b3kn (7.99) 

Comparison of this characteristic equation and the demanded one in 7.98 
can lead to the determination of the values of !,:i and hence rna trix K. 
However, as il can be seen, the algebra behind such a problem is very 
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cumbersome and might in some cases be insoluble. On the other hand, 
however, if system (A, B) is controllable, the closed-loop system can be 
expressed in its controllable canonical form as 

A*-B*K* = 

a]'1 - b]'k! 
a~ 1 - b2k'{ 
a~l-

a]'2 - b]'k~ 

- b2k~ 
()~2 - b3k2 

Matrices A* and B* are calculated using Equations 7.72 and 7.73. For 
SISO systems, they have been found to be as given in Equations 7.80 and 
7.81. In this case, the closed-loop transfer function becomes 

lsi- A*+B*K* I= 

8 

0 
0 

-1 
8 

0 

0 
0 
0 

-a2- k2 · · · 8- an - k~ 

whose expansion can easily be determined to be 

'lj;(s) = 8 11 +(an+ k~)sn-1"+ (an-1 + k~_ 1 )sn- 2 + 
· · · + (a3 + k3)s2 + (a2 + k~)s + (a1 + kr). (7.100) 

Comparison of this equation with the demanded one in 7.98 shows that 

i = 1, 2, 3 · · · n, 

from which the elements of the feedback matrix can be computed as 

or in vector form 

where 

k7 = qi- ai i = 1, 2, 3 · · · n 

K* = q- a 

q = [ql q2 

a= [a1 a2 

qn] 
an]· 

(7.101) 

(7.102) 

(7.103) 
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It is emphasized again that this procedure applies only for 8180 systems 
in controllable canonical form, and that the order of the clements in vectors 
a, q and K* are as shown above. Improper order of the elements will 
give wrong results. This matrix K* is the feedback gain for the system in 
controllable canonical form, i.e., the control effort is such that 

u(t) = -K*x*(t), (7.104) 

where from Equation 7.67 

x*(t)= p-1 x(t). 

Therefore, for the original system (not in control canonical form) this con-
trol effort becomes 

u(t) = -K*P-1 x(t) (7.105) 

so that the corresponding feedback gain matrix K is 

(7.106) 

In MATLAR pole placement design is accomplished by using command 
"place(A,B,P)", which computes the state feedback matrix K such that the 
eigenvalues of A- BK are those specified in vector P. Whenever used, 
the matrix algebra rules must be observed as to the dimensions of A, B 
and P so that equation A - BK remains valid. This means that P and B 
must be an n-dimensional vector where A is an n x n square matrix. If 
complex eigenvalues are required, they must appear in consecutive complex 
conjugate pairs in P. The "place" syntax is: 

K = place(A, B, P). 

Example 7.14 For system matrices given as 

[ 
2 l 1 l A= 2 3 4 

-1 -1 -2 

design a state feedback controller K to place the poles of the system at 
s = -2, -5, -6 . Confirm the resv.lts using MATLAB. 

Solution 7.14 The given system is not in contmllable canonical form. 
Transforming it into a controllable canonical form using methods discussed 
previously the transformation matrix P is needed. With this transforma-
tion matrix, the whole exercise of transforming the system can be skipped, 
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as will be seen in this example. Pirst, get the chamcter·istic equation of the 
uncontrolled system. 

lsi- AI= 0 

===} s3 - 3s2 - s + 3 = 0, 

from wh·ich the vector a of the coefficients is found to be 

a=[3-1-3]. 

Now the controlled system needs to have the poles at -2, -5 and -6; thus the 
characteristic equation of the closed-loop system becomes 

(s + 2)(s + 5)(s + 6) = 0, 

which expands lo 

s3 + 13s2 + 52s + 60 = 0. 

Therefore, the vector- q of the coefficients of the controlled system becomes 

q = [ 60 52 13] 

which, according to Equation 7.101, gives the gain matrix K for the system 
in canonical form as 

K*= q- a. 

From these results it follows that 

K* = [57 53 16] . 

This corresponds to the canonical gain matrix. In order to convert it into 
the gain rnatrix K of the original state-space syste·m, the transformation 
matrix P is needed where 

P=CQ 

so that K can be calculated by using Equation 7.1 06. Now, from the char-
acteristic equation of the uncontrolled system, the coefficients matTix is 

[-1 -3 1] 
Q = -3 1 0 

1 0 0 



530 Design and Analysis of Control Systems 

and the contTollability matTix of the system is 

c = [ B I AB I A 2B J 

[
1 5 17] 

= 2 12 26 . 
1 -5-7 

TheTefore, the transfomation matTix P is 

[ 
1 5 17] [ -1 -3 1] 

p = 2 12 26 -3 1 0 
1 -5-7 1 0 0 

[ 1 2 1] 
-12 6 2 ' 

7 -8 1 

and the inverse is 
11 5 

- 614l -
64 64 

p-1= 13 3 7 
6cl 64 64 

27 11 15 - -
64 64 64 

TheTefore, the Tequired feedback gain is 

11 5 1 
--

64 64 64 

K = [57 53 16] 
13 3 7 
64 64 64 

27 11 15 
64 64 64 

which gives 

K = [ 27. 313 -4. 187 5 -2. 937 5] . 

Note that the system matrix A in contml canonical form becomes 

A*= p-1 AP 

[ 0 1 0] 
= 0 0 1 . 

-3 1 3 
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In MATLAB this problem could be solved as follows: 
A=[1 2 1;2 3 4;-1 
8=[1;2;1]; 
P=[-2 -5 -6]; 
K = place( A, B, P). 

-1 - 2]; 

7. 7.2 Pole Placement Using Ackermann's Formula 

531 

The pole placement method det>cribed in the previous section is cumber-
some in that it requires the system to be converted to controllable canonical 
form and the Gain matrix K* is computed element by element. Acker-
mann's formula offers an elegant way of determining the feedback matrix 
K for pole placement using information from the required closed-loop char-
acteristic equation without converting the system to controllable canonical 
form. It gives a direct relationship between the closed-loop characteristic 
equation 

and the system matrix A (not in controllable canonical form) so that by 
using the earlier relationship between ki, a; and qi matrix K is obtained 
directly where 

K* = q- a. (7.108) 

Derivation of Ackermann's formula originates from Cayley-Hamilton's 
theorem, which states that every square matrix satisfies its characteristic 
equation. For matrix A, whose characteristic equation is given by 

ol•( ) n . n-1 ,n-2 + n-3 + 2 + 0 '+' s = s + ans + an-18 an-28 · · · + a3s a2s + a1 = , 
(7.109) 

then according to Cayley-Hamilton's theorem 

1/J(A) =An+ anAn-l + an-lAn-2 + an-2An-3 + · · · + a3A2 + a2A + a1I 
= 0. 

It is assumed that A is not in controllable canonical form, therefore, the 
first task would be to convert it to controllable canonical form (A*, B*) 
by similarity transformations 
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A*= p- 1AP 
B* = p- 1B. 

The state vector will also be transformed to 

Therefore 

(7.110) 

(7.111) 

(7.112) 

'1/J(A *) = A *n +anA *n-1 + an-1A *n-2 + · · · + a3A *2 + a2A * -I{'O.:iffi3) 
= 0. 

Similarly, for the controlled closed-loop system whose characteristic equa-
tion is given in Equation 7.107 the theorem will be satisfied in this way 

'1/J(A*-B*K) = (A*-B*K*t +qn(A*-B*K*t-1 + ··· 
+ q3(A*-B*K*)2 + q2(A*-B*K*) + q1I 
=0. 

(7.114) 

However, since there is no a priori information about matrix A*-B*K*, 
this equation is not immediately useful. Instead, the method gets simplified 
by letting B*K* = 0, which results in 

(7.115) 

This step is done for mathematical convenience; in fact Equation 7.115 is 
no longer equal to zero. From Equation 7.112 A *n can be written as 

which, when used in Equation 7.115 above, gives 

'1/J(A*) = (qn- an)A*n-1 + (qn-1- an-1)A*n-2 + 
· · · + (q2- a2)A* + (q1- a1)I. 

If e 1 is a vector of the first column of an identity matrix i.e. 

(7.117) 
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e 1 = [ 1 0 0 · · · 0 J T , 

then because of the structure of A* 

ef A = [ 0 1 0 · · · 0 r = e~· 

ef A 2 = erA = [ 0 0 1 . . . 0 J T = er 

ef A 3 = ef A = er 
eTA n-1 = eT A = eT 1 n-1 n · 

Using this result and by multiplying Equation 7.117 by ef gives 

ef 1/J(A*) = (qn- an)ef A*n-1 + (qn-1- an_l)ef A*n- 2 + 

(q2- a2)ef A*+ (ql- a1)e[I 

= (qn- an)e~ + (qn-l - an-1)e~-1 + 

+ (q2- a2)er + (ql a1)ef 
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(7.118) 

= [(qn- an) (qn-1- an-1)· · · · · · (q2- a2) (q1 - al)]. 
(7.119) 

Since from the previous section it was shown that 

q-a= K*, 

then 

ef 1/J(A*) = [ kn kn-1 kn-2 · · · k1] = K* (7.120) 

where K* is defined for the system in controllable canonical form. Hence, 
the control input u( t) becomes 

x* = -K*x* 

(7.121) 

Therefore, the required system gain based on the configuration is now in 
canonical form, 
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K = K*P-1 

= ef 1/J(A *)p-I (7.122) 

Since A*= p- 1AP (a similarity transformatiou) then Am= p-1Anp 
so that 

1/J(A *) = p-11/J(A)P. (7.12:3) 

Hence, Equation 7.122 becomes 

(7.124) 

From the relation that 

P=CQ 

it follows that 

(7.125) 

which, when used in Equation 7.124 above, for K gives 

(7.126) 

It is interesting to note that ef Q-1 = e~ (the reader may verify this), so 
that Ackermann's formula gets the following form 

(7.127) 

or by letting e~C- 1 = bT this formula can be written as 

(7.128) 

Though attractive, the application of Ackermann's formula is limited to 
SISO systems only, where the assumptions for A* and B* hold. l'viATLAB 
implements Ackermann's formula through command "acker(A,B,P)". This 
command is similar in all respects to the command "place" discussed in 
the previous section in application. However, it is known to be numerically 
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unreliable particularly for problems of order greater than 10, or weakly 
controllable systems. As such, for problems of that kind, it should be 
avoided. Its syntax is 

K = acker(A, B, P). 

Example 7.15 Consider the system described by 

[ 
2 1 1 l A= 2 3 4 

-1 -1 -2 

Use Ackermann's formula to design a state feedback controller K so that 
the chamcteTistic equation of the system becomes 

s3 + 13s2 + 52s + 60 = 0. 

Solution 7.15 The controllability matTix for the given system is 

c = [ B I AB I A 2 B l 

[
1 5 17] 

= 2 12 26 ' 
1 -5-7 

and hence, the inveTse is 

[ 
-0.3594 0.3906 0.5781 l 

c- 1 = -0.3125 o.1875 -0.0625 
0.1719 -0.0781 -0.0156 

The Cayley-Hamilton matrix of A in the closed-loop system is given by 

'lj!(A) =A 3+13A2+52A+60I 

[ 
243 117 11 7] 

= 202 328 308 . 
-85 -85 -65 

TheTefoTe, diTect application of Ackermann's foTmula 

gives 

[ 
1 5 1 7]-l [ 243 11 7 11 7] 

K = [ 0 0 1] 2 12 26 202 328 308 
1 -5-7 -85 -85 -65 
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which gives the gain matrix as 

K = ( 27. 313 -4. 187 5 -2. 937 5) . 

It will be realized that this is the same problem as in the previous example. 
In order to minimize the computing round-off ermr, the inverse of C was 
used in its raw foTm to show the exactness of the results for the two methods. 
However, using the computed inverse of e will give the same results with 
some rounding-off errors as shown below 

[ 
-0.3594 0.3906 0.5781 l 

K = [ 0 0 1) -0.3125 0.1875 -0.0625 
0.1719 -0.0781 -0.0156 

= [27.322 -4.1785 -2.9285]. 

[ 
243. 11.7 117] 
202 328 308 
-85 -85 -65 

In MATLAB the Ackermann's formula could be used to solve this problem 
as shown below giving the same results. 

A=[1 2 1;2 3 4;-1 -1 -2]; 
8=[1;2;1]; 
P = roots( [1 13 52 60]); 
K = acker(A, 8, P) 

7.8 Introduction to Optimal Control 

The pole placement and the consequent Ackermann's formula apply to 
SISO systems only. For MIMO systems, where there are many conflicting 
elements to be selected under some constraints to put the system under 
optimal conditions. The controller design turns out to be an optimization 
problem in which some form of performance index or cost function has to 
be optimized. This is called optimal control. In its general form optimal 
control handles all states with appropriate weights. As has been stated 
before, some of the states may not be measurable and so some means of 
estimating them from noisy measurements is done. The performance index, 
which has to be optimized under optimal control, is defined as a combina-
tion of the estimated state vector, the control vector and/or the output 
vector. Depending on the form of the performance index, state vector and 
estimation policy as well as underlying assumptions, a number of optimal 
control strategies can be defined. In this section, the basic principles of 
the optimal control methods are discussed, but first, a brief overview of 
optimization theory is given. 
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'7.8.1 Overview of Optimization Theory 

7.8.1.1 The Optimization Problem and Optimality Conditions 

An optimization problem is a mathematical problem that involves finding 
the best or optimal solution of a given problem under some constraints. The 
general structure of an optimization problem can be posed as follows: 

"Minimize (or maximize) a function f(x) subject to the condition that 
~E 0" 

In this optimization problem, the function f:JRn =? lR to be optimized 
is a real valued function called the objective function or the performance 
(cost) index. The vector xis ann-vector of n-independent variables, i.e., 

whose elements are called decision variables. The set 0 E JRn is called the 
constraint set or feasible set that captures the optimization constraints. 
Often the constraints (equality and inequality) set take the form 

0 = {x:h(x) = 0; g(x) :'S 0}, (7.129) 

where h and g are given vector functions. Depending on the presence or ab-
sence of the constraints, the optimization may be referred to as constrained 
or unconstrained optimization. 

Under unconstrained optimization of a real valued function f(x), the first 
and necessary condition for it to be optimal at point~* is that the gradient 
of f(x*) must be zero, 

(7.130) 

When this condition is met, the point x* is called a stationary point. The 
stationary point may be a maximum, minimum, or an inflection point. In 
most control problems, the interest is in minimization of the given objective 
function, therefore, the minimum point has to be sought. The minimum 
of f(x) at x* is found when the second derivative or the Hessian of f is 
positive definite. 

\72 f(x*) = [[)2 f(x*)] T > 0. 
fJx;fJXJ 

(7.131) 

Note that for maximization problems, the same conditions must be satisfied 
but with opposite polarity for the second condition. In fact, a maximization 
problem may be turned into a minimization problem by sign inversion. 
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Example 7.16 Determine the vectorx = [x1 x 2jT, which minimizes the 
function f(x) = 2xi + x~- 4xlx2 + 4 and the minimal value of f(x). 

Solution 7.16 The first condition for a stationary point is \7 f(x) = 0 and 
for the given function it becomes 

l a£~7)1 [sxr-4.7:2] 
\lf(x) = = , 

af(x) 2x2- 4xl 
OX2 

Applying the first condition for a stationary point gives two equations in x1 

and x 2 as 

8xi- 4x2 = 0 
2x2- 4xl = 0, 

whose s·imultaneous solution gives 

The condition for a minimum is \72 f ( x) > 0 and for the given function 

fJ2j(x) [J2f(x) 
oxi OXl ax2 

[J2f(x) fJ2j(x) 
a:rl ax2 8:r~ 

= [ 24xr -4 J 
-4 2 ' 

and for this to be positive definite, all its eigenvalues must be positive. Thus, 
expressions for the eigenvalues have to be determined from the characteristic 
equation 

1>-I-v2j(x)l =I >.-:4xi >.~2~ =0 

= (>.- 24xi)(>.- 2) - 16 = 0 

= >.2 - (2 + 24xn.x + (48x7- 16) = o 
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which gives the eigenvalues as 

>.1, >.2 = (1 + 12xi) ± V(l + 12xi)2 + (16- 48xi), 

the conditions for all eigenvalues to be positive are 

(1 + 12xi) > 0 

(1 + 12xi) > Ju + 12xi)2 + (16- 48:ri), 
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which gives the limiting values of x1 as x1 2: )3 and x 1 :::; - )3. For the 
functional stationary values found above, the only points that satisfy these 
conditions are 

Hence, these are the val11es of x that minimize f(x). The functional value 
at these points is f(x) = 1. Note that at~= [0 O]T the funct·ional value is 
J(x) = 3 and hence it is not a minimum. 

7.8.1.2 Constrained Optimization: The Lagrangian and the La-
grange Multipliers 

When the constraint set is defined, the problem becomes a constrained 
optimization problem. The constraints may be equality or inequality con-
straints. For the purpose of this chapter, only equality constraints are 
considered. 

Suppose the objective (vector) function f(x) is to be minimized subject 
to constraints that h(x) = 0. The standard procedure of solving tmch an 
optimization problem is to combine both the objective function f(x) and 
the constraint equation h(x) using Lagrange multipliers~ into one equation 
known as the Lagrangian L.:(x, .X) where 

L.:(x, ,\) = f(x) + ~Th(x) (7.132) 

and~ E rn:.n is a vector of Lagrange multipliers, which are to be determined 
on the course of getting the solution to the given optimization problem. 
Thus, the necessary conditions that minimize f(x) and yet satisfy the con-
straint equation h(x), are then contained in the Lagrangian L.:(x, .X) and 
are 

aL.:(x, .X) = h(x) = 0 
a>. 

aL.:(x ..\) r 
a~ = V'f(x) + >.. vh(x) = 0. 

(7.133) 

(7.134) 
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Although in most applications the values of the Lagrange multipliers are 
not needed, they must be determined, however, as intermediate values that 
allow complete determination of the optimal quantities of interest, i.e., vec-
tor x* and possibly the minimum value of the objective function f(x*). By 
introducing the Lagrange multipliers, the constrained problem of minimiz-
ing the objective function f(x) is reduced to an unconstrained problem of 
minimizing the Lagrangian £(x, ..\) without constraints. 

7.8.1.3 Objective Functions 

In control systems design, the objective function is normally chosen by 
the control designer. This might be to minimize the absolute error, mean 
square error or anything that fits into the problem at hand. The objec-
tive function can be linear, quadratic or polynomial. However, in most 
applications, the quadratic objective function is used, i.e., 

1 T 
f(x)q = 2x Wx, 

though in some cases, the linear function 

f(x)L = Wx 

(7.135) 

(7.136) 

is also used subject to some constraints. In the quadratic objective function, 
the matrix W, known as the weight matrix, is chosen to be symmetric and 
positive definite. It expresses the relative importance of the various decision 
variables x in optimizing the problem. 

7.8.2 The Basic Optimal Control Problem 

In designing feedback optimal controllers, the basic problem faced is that 
of selecting the elements of the feedback matrix K that optimize the various 
criteria imposed on the system states x(t) and the control signals g(t). 
These criteria are altogether contained in a quadratic: objective function 
that is normally expressed as 

where the weight matrices W 1 and W 2 are positive definite expressing the 
relative importance of the different states and controls in the controlled 
system as a whole. The term ~xT(T)W0x(T) is a penalty term that dic-
tates the final required final state x(T), in which the weight matrix W 0 is 
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also symmetric positive definite. Therefore, it is required to minimize this 
performance function subject to the conditions that 

x(t) = Ax(t)+Bg(t) (7.138) 

where 

g(t) = -Kx(t). (7.139) 

As can be seen, this is a constrained optimization problem with equality 
constraints that can then be solved using the method of Lagrange multipli-
ers. Important here is how correctly the weight matrices in the objective 
function are defined. Since the constraint Equation 7.137 is time depen-
dent, it must also be satisfied at all times, therefore, the corresponding 
Lagrangian becomes 

1 1 {T 
.C(x, .X)= 2xT(T)Wox(T) + "2 Jo xT(t)W1x(t) + !!T(t)W2g(t) + 

.X(t) [ d~~t) - Ax(t) - Bg(t)] dt (7.140) 

¢(x(T)) +loT 1t(x, u, .X)dt. (7.141) 

Since the final state is fixed, unconstrained minimization of this Lagrangian 
over the time interval [0, T] can be seen as just the unconstrained minimiza-
tion of the Hamiltonian 'H(x, u, A.). 

The conditions for optimization are obtained when the partial derivative 
of the Hamiltonian with respect to each of its variables is equal to zero. 
That is 

o1t(x,g, .X) = dx(t) - Ax(t)- Bu(t) = 0 
o.X dt -

(7.142) 

81t(x,y,.X)_w () AT.\() d.X(t)_ 
OX - lX t + t +--;u- - 0 (7.143) 

(7.144) 

Equation 7.142 is the original state equation that was introduced in the 
Hamiltonian as a constraint, and Equation 7.143 is an equation resembling 
the state equation but in .X(t). These equations are known respectively 
as the state and costate equations, while Equation 7.144 is the control 
equation. The solution of the control equation gives 



542 Design and Analysis of Contml Systems 

(7.145) 

Comparing this equation and Equation 7.139, it is evident that if the La-
grange multiplier as .A(t) can be determined as a function of x(t) then the 
optimal feedback gain matrix K will be determined as a function of the 
weight matrix W 2 and the input matrix B. This can be done by combin-
ing the three equations as follows: First, the control equation and the state 
equation are combined so as to remain with only two equations, which can 
hence be solved, (though at a cost). The combination of the state equation 
and the control equation gives 

(7.H6) 

Thus, Equation 7.146 and the costate equation can be presented in a matrix 
form known as the Hamiltonian system, as follows: 

[ ~(t)] = [ A -BW2;Br] [x(t)] 
.A(t) - W 1 -A .A(t) ' 

(7.147) 

where the coefficient matrix is known as the Hamiltonian matrix. To find 
the optimal control, the Hamiltonian system must be solved, taking into 
account the boundary conditions 25,.(t) and .A(t) and inputs over the interval 
[O,T]. However, normally, .A(O) and .A(T) are unknown and this further 
complicates the problem. For the purpose of this introductory rrmterial, 
the free final state ?So(T) given an initial state ?So(O) will be assumed over 
this control interval [O,T]. Notice that this becomes a two-point boundary 
value problem that still remains difficult to solve. A popubr method that 
has been very successful in handling this problem is the sweep method, 
which was suggested by Bryson and Ho in 1975. This method assumes that 
?So(t) and .A(t) are linearly related such that 

.A(t) = S(t)x(t). (7.148) 

This reduces the two-point boundary value problem in x(t) and .A(t) to 
a single point problem in S(t) which can thus be solved with ease. Be-
fore dwelling on the solution of the Hamiltonian system in Equation 7.147, 
consider the time derivative of Equation 7.148. This becomes 

\(t) = S(t)x(t) + S(t)x(t). (7.149) 

replacing x(t) by the state Equation 7.146 and using the relation in 7.148 
gives 

(7.150) 



State Space Design Methods 543 

Also by using Equation 7.148 in the costate equation gives ..\(t) as 

(7.151) 

Now, equating Equations 7.150 and 7.151 gives 

-W1x(t)- ATS(t)x(t) =S(t)x(t) + S(t) [Ax(t)-BW21BTS(t)x(t)], 
(7.152) 

so that on elimination of ~(t) and doing some rearrangement, this problem 
reduces to 

(7.153) 

for all t < T. This is a matrix equation known as the Algebraic Riccati 
Equation (shortened ARE) which must be solved for S(t) with the final 
condition of S(T) so that .X(t) in Equation 7.148 can be determined and 
hence, the control input in Equation 7.145 becomes 

(7.154) 

which gives the feedback gain matrix K as 

(7.155) 

Normally, the Riccati equation in 7.153 is solved by the backward in time 
approach. The gain obtained by solving the ARE this way is normally 
time varying as it varies with S(t) even if the system is time-invariant. For 
most practical applications, it is not desired to have a time varying K, 
therefore, a steady state solution of ARE for S(t) is required. This steady 
state solution of ARE is obtained from Equation 7.153 by making S(t) = 0 
so that the steady state Riccati equation becomes 

(7.156) 

If the steady state conditions of x(T) or S(T) are known (which is nor-
mally the case), the common approach to solve the Riccati equation is 
by backward propagation in time approach from time T to t giving x(t) 
and S(t) respectively, and this is normally done off-line. However, in this 
section, it has been assumed that the initial condition of x(O) is known, 
therefore, it is going to be solved by forward approach, which seems to be 
simpler than the backward approach, though basically both approaches are 
similar. A brief discussion on the backward approach is given at the end of 
this section. 

The analytical solution of ARE is determined from the Hamiltonian 
Equation 7.147 and the sweep Equation 7.148 
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[ x(t) J = [ A -BW2~BT ] [x(t)] 
)..(t) -W1 -A A(t) 

A(t) = S(t)x(t). 

This is a system of linear time-invariant ordinary deferential equations 
which, as has been stated before, can be solved either by forward or back-
ward propagation in time using an appropriate transition matrix of the 
Hamiltonian matrix H 

(7.157) 

The solution, S(t), of the Riccati equation can then be determined ana-
lytically in terms of the eigenvalues and eigenvectors of this Hamiltonian 
matrix. Due to the special structure of this matrix, if 1{ has distinct eigen-
values, then it can be written as a diagonally structured matrix such that 
its eigenvalues are ±>.i, i.e., if /\ is an eigenvalue of 1{ then so is -Ai. 
Consequently, a left modal transformation matrix E of 1{ can be defined as 

(7.158) 

such that 

(7.159) 

where A is a diagonal matrix of the eigenvalues of 1{ arranged so that fast 
eigenvalues are in the upper left block matrix -A 

A [-A 0] A= 0 A . (7.160) 

Associated with the right modal transformation matrix is the right modal 
transformation matrix Dr defined as 

(7.161) 

which can be used in Equation 7.159 to give 
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In this case, D is defined as 

T - [Df.1 D§'1 l 
D - DT DT . 

12 22 

The right modal transformation matrix D is related with the left modal 
transformation matrix E as 

Therefore, the Hamiltonian system can then be written as 

Defining the normal state vector q(t) = [q1(t) q 2(t)JT as 

(7.162) 

or equivalently 

(7.163) 

Some mathematical operations show that this normal state vector must 
satisfy the state dynamics 

[ql(t)] =[-A OJ [q1(t)] 
<'l2(t) 0 A qz(t) 

whose solution is 

(7.164) 

where q(O) is the initial value of the normal state at t = 0. Thi8 shows 
that the normal state q 1 (t) is completely stable while q 2 (t) is completely 
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unstable. If the state vector at t = 0 is x(O) then the initial normal states 
can be determined as 

(7.165) 

which together with Equation 7.164 gives 

On employing the sweep method it follows that 

A.(O) = S(O)x(O), 

so that 

[ q 1 (t)] _[e-At O·] [(Di~ +D~1 S(O))x(O)l 
q2(t) - 0 eAt 

(Df2 + DT2 S(O)) x(O) 

= [e-At (Df1 + D~1 S(O)) x(O)l· 

eAt (Df2 + D~2 S(O)) x(O) 

Using this in Equation 7.163 gives 

Now, since x(t) must have a stable response, it must thus be generated by 
a stable normal state q1 (t), where 

(7.166) 

This calls for 

Since is not necessarily a null matrix, this m<)ans 
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which gives 

S. n-r E-r nr Er th lnce 22 = 11 ' 12 = - 21 en 

-T '1' S(O) = E 11 E 21 . 
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Knowing S(O) together with x(O), it becomes possible to solve by the linear 
system by forward propagation until the steady state is reached. 

Alternatively, the solution of the Riccati equation can be determined 
from the boundary condition S(T) by backward approach if the steady 
state boundary condition of the Riccati equation S(T) is known. In this 
case, the Riccati solution can be determined by using Equation 7.166 with 
some slight modifications to be in the backward in time propagation where 
the steady state normal state of the stabilizing solution becomes 

Since by backward method 

then the analytical solution to the equation becomes 

Currently, almost every Computer Aided Control System Design (CACSD) 
packages include routines that solve both the steady state and the differ-
ential algebraic Riccati equation (ARE). In MATLAB, the routines ARE 
and RIC are used to solve this equation. 

7. 9 Estimator Design 

So far, in the discussion on full state feedback control, it has been as-
sumed that all states will be available for feedback. In practice, this is 
not always the case not only because of the cost of sensors that would 
be required to measure all the states, but also the fact that some of the 
states are physically inaccessible. The common approach used by most 
control systems is to take measurements of the outputs that are assumed 
to have sufficient information about the dynamics of a system. Based on 
these measurements, the entire state vector can be estimated. It is this 
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estimated state vector x that is fed back in the control loop to achieve the 
required control action 

u(t) = -Kx(t). (7.167) 

The unit that does this state estimation is called the observer or simply 
the estimator. In this section, the general principles of state estimation 
are presented. Two methods of state estimation are available for this task. 
These are the full-order estimators and the reduced-order estimator. The 
full-order estimator reconstructs the entire state vector from a set of mea-
surements while the reduced-order estimator reconstructs only those states 
that are not contained in the measurement. Both have their advantages 
and disadvantages, as will be seen. In this context the terms observer and 
estimator can be used interchangeably. 

7.9.1 Full State Estimator 

Consider an idealized noiseless LTI system (in this case a general MIMO 
system may be assumed which will assist further in the discussion of reduced-
order estimators in the next section) whose dynamics may be presented as 

x(t) Ax(t) + Bu(t) (7.168) 

where the output is measured using 

y(t) = Cx(t) + Du(t). (7.169) 

Here the description "idealized noiseless" has been stressed because real 
systems will have additive noise in both the measurement and the state 
equation. There is need to estimate the vector x from the measurements 
y so that the error between these estimates and the true state is mininml. 
There may be several ways of defining the minimal error, such as minimum 
square error or minimum absolute error and many others, some of which 
will be discussed later. If the estimation error is defined as 

x(t) = x(t)- x(t) 

and since the estimate x(t) must satisfy Equation 7.168, i.e., 

:R(t) = Ax(t) + Bu(t) 

thus, this estimation error vector x(t) will satisfy 

ic(t) = x(t)-:R(t) 

= Ax(t) + Bu(t)- Ax(t)-Bu(t) 

= Ax(t)-Ax(t) 

= Ax(t). 

(7.170) 

(7.171) 

(7.172) 



State Space Design Methods 

This shows that the error follows the same dynamics as the true 
which means that the error at any time t will be given by 
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(7.173) 

where x(O) is the initial error. Now if the initial estimate is very close to the 
true state and all the eigenvalues of the system matrix A represent stable 
poles, then the error will keep decreasing and hence, the state estimate will 
converge to the true state vector. However, in most cases the system A is 
not stable (which is one of the reasons that the controller is to be designed). 
Therefore, means must be provided that will ensure that the plant poles in 
the estimation process allow the error to decay to zero. To accomplish this 
sort of state estimation, the model is designed to mimic the plant dynamics 
as 

~(t) = Ax(t) + Bu(t), (7.174) 

and is connected in parallel with the plant. The outputs of the model 
and the plant are compared and then the error is fed back through some 
estimation gain L in a way that the closed-loop estimation model matrix 
will have fa::;t eigenvalues. The actual output measurement y(t) is due 
to the true state x(t) and the model output y(t) is due to the estimated 
state :X( t). The difference between them gives the measurement error. In 
fact, the term "measurement error" as u::;ed here is mideading, as there 
are no errors in measurements insofar as an ideal noiseless system has been 
assumed. The correct term to be used here is the measurement residual or 
innovations. 

Since 

then 

y(t) = y(t)- y(t). 

y(t) = Cx(t) + Du(t) 

y(t) = Cx(t) + Du(t), 

y(t) = Cx(t)- Cx(t) 

= cx(t). 

(7.175) 

(7.176) 

The effect of feeding back this residual through a gain matrix L i::; to change 
the estimation model dynamics so that it can be expressed mathematically 
as 

~(t) Ax(t) + Bu(t) + Ly(t) 

= Ax(t) + Bu(t) + LCx(t) (7.177) 
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Now since x(t) = x(t)- x(t), then 

~(t) = Ax(t) + Bu(t) + LC [x(t)- x(t)] 

= (A- LC)x(t) +Bu(t) + LCx(t). (7.178) 

Hence, on differentiating Equation 7.170 and using Equations 7.168 and 
7.177, it follows that 

x(t) x(t.)-x(t.) 
=Ax( I)+ Bu(t)- (A- LC)x(t)- Bu(t) - LCx(t.) 

= (A- LC)x(t) - (A- LC)x(t) 

= (A LC)x(t). (7.179) 

This is the modified state estimation error dynamics whose solution is 

(7.180) 

As can be seen, the error dynamics depend only on the initial estimate :X:(O) 
and the three system model matrices A, L and C. It has no relationship 
with the control input u(t). For this error to converge to zero very fast, 
the matrix exponential e(A-LC)t must decrement, which requires that the 
eigenvalues of A- LC to be negative large (i.e., fast eigenvalues). This 
implies that the observation gain matrix should lJe made large enough. In 
fact, if the ohc;crvation closed-loop poles are made large negative, the state 
estimate error will converge to zero irrespective of the initial condition. The 
selection of the estimator gain matrix L, which results in fast eigenvalues 
of the closed-loop system A- LC, can be clone in just the same way as 
in the determination of the controller gain matrix K through assignment 
of the eigenvalues of the estimation closed-loop rnodel A - LC. Since the 
characteristic equation of this estimator model is 

o:(s) ~ det [si- (A- LC)] = 0. (7.181) 

By using polynomial expansion, it is then possible to get values of the gain 
matrix L. 

Suppose that it is required to place the poles of the closed-loop observer 
model at 

(7.182) 

Essentially, this means that the polynomial form of the characteristic Equa-
tion 7.181 becomes 

(7.183) 
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Now, since the model matrix A and the output matrix C are both known, 
by comparison of the coefficients of Equation 7.181 and those of Equation 
7.183, it becomes possible to get the elements of L. However, as it was 
shown in the controller design, Equation 7.181 might have many unknown 
elements than can be computed through this comparison. To be able to 
get all elements of L, the estimator model (A, C) must be in observable 
canonical form, just the same as it was necessary for the control system 
(A, B) to be control canonical form. 

Alternatively, one can use Ackermann's formula in almost the same way 
as it was used in determination of the controller gain matrix K. Derivation 
of the observer Ackermann's formula will not be given here as it followc; 
similar steps and reasoning as for the controller design. For the observer 
design, it is given as 

(7.184) 

where a(A) is the Cayley-Hamilton matrix characteristic equation of the 
system A, 0 is the observability matrix of the system (A, C) and e1 is the 
vector of the first column of an identity matrix. 

7.9.2 Duality of Estimation and Control 

The estimation and control problems are mathematically equivalent. The 
control problem is that of determining the gain mRtrix K so that the poks 
of the closed-loop system are fast eigenvalues of the matrix A - BK and the 
estimation problem is that of determining the estimator gain that gives fast 
eigenvalues of the observation closed-loop system A- LC. Now, since the 
eigenvalues of (A- LC) are the same as those of the system (A- LC)T 
vvhcre 

185) 

It follows that the method of determining the control gain matrix Kin the 
system A - BK is the same as that of determining the transpose of the 
estimation gain matrix LT in the system AT -CTLT, where the matrices A 
and B in the control equations are replaced by AT and cT. This equivalence 
is known as duality of estimation and control and is summarized in the 
following table 

Controller Estimator (Observer) 
A Al. 
B cl· 
c Bl 
D D 

This duality property allows us to use the same design tools for estimation 
as for control problems by using suh:;Litutions shovvn in the table above. For 
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this reason, MATLAB commands "acker" and "place", which are used in the 
controller design, are also applicable to estimator design where the syntax 
becomes 

L=acker(A', c', P e)' (7.186) 

and 

L=place(A' ,c' ,P e)'. (7.187) 

Here, P e is the vector that contains the desired estimator error poles. 

7.9.3 Reduced-Order Estimator 

The full-order estimator reconstructs the entire state vector using mea-
surements of some of the state variables. This estimator gives some es-
timates that are redundant because some of the states can be available 
directly from the output measurements. The only advantage of this type 
of estimator is that, when the measurements are corrupted with noise, the 
full state estimator smoothens by filtering the measured states as well as 
reconstruction of the unmeasured states. However, on the other hand, it 
is associated with unnecessary computational load due to the fact that it 
computes even those states that can be available from measurements, for 
example, if the output matrix contains rows in which all entries are zero ex-
cept one. The need to alleviate this load leads to the idea of reduced-order 
estimator, which separates the states that are available directly from the 
measurements in estimating the unknown states. This reduces the order 
of the estimator by the number of the measured outputs, and hence, the 
name "reduced-order estimator." 

Suppose that for the linear system 

the state vector is 

x(t) = Ax(t) + Bu(t) 
y(t) = Cx(t) + Du(t), 

and the measurement vector is 

y(t) = [ YI(t) Y2(t) Y3(t)JT. 

If the output and the feed-through matrices C and D are 

[ 
1 0 0 0 0] 

C= 01000 
0 1 1 1 1 

(7.188) 

(7.189) 
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then the measurements will contain 

[ 
Y1 ( t) l [ 1 0 0 0 0 l 
Y2 ( t) = 0 1 0 0 0 
Y3( t) 0 1 1 1 1 

(7.190) 

Clearly, from this measurement vector, the states x 1 (t) and x 2 (t) are di-
rectly available as measurements y1 (t)and y2 (t) respectively. However, from 
this same measurement vector, there is no sufficient information that can 
lead to determination of the states x3(t), x4(t), and xs(t). Therefore, an 
estimator that estimates only these unknown states will be a reduced esti-
mator of order 3, i.e., the state vector of order 5 has been reduced by the 
order of the states that are directly available from the measurements. 

Generally, if the measurement ;ector y 1 is such that part of it contains 
measurements Ym, which represent directly the states of the system and 
some measurements that do not, e.g., an under-determined linear combina-
tion of the states as in Equation 7.190, say YR, it is possible to partition it 
as 

(7.191) 

Corresponding to this partitioning, the output and the feed-through matri-
ces can also be partitioned as 

(7.192) 

so that the measurement equation becomes 

(7.193) 

1 Direct dependance of the variables on time t will not be shown, for example, instead of 
writing y(t) it will be written as y, {similarly for x instead of x(t), z instead of z(t) and 
u instead u(t)} unless where the context requires otherwise. 
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Since the aim is to separate the states that are directly obtainable in these 
measurements from the rest of the state elements, a coordinate transforma-
tion P which transforms x to a new variable z, is required so that the new 
state variable z can be partitioned to two components that correspond to 
the measurements Ym, and the rest ZR is unknown, (to be estimated). The 
modal (diagonal) canonical form may be the best choice for this matter. 
Thus 

x=Pz 

where 

The transformation matrix T can also be partitioned as 

so that the state vector x can be expressed as 

(7.194) 

The transformation matrix P must be associated with a left inverse T where 

such that 

(7.195) 

Using this inverse on Equation 7.194 gives 

(7.196) 

Therefore, the similarity transformation from x variable to the z variable 
gives 

z = p-l APz + p-1Bu 

y = CPz+Du, 
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which can be expressed as 

This structure can be simplified further and expressed in block matrix form 
as follows: 

(7.197) 

(7.198) 

where 

= TmAPn~. ARm= TRAPm 
ARR = TRAPR Cmm= CmPm Cmn= CmPR 
CRm = CnPm eRR= CRPR Bm= TmB (7.199) 

BR = TRB. 

Notice that from equations 7.193 and 7.196 it follows that 

(7.200) 

and Equation 7.194 can be expanded as 
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Therefore, according to Equation 7.195 

TmPm = CmPm = Cmm =I 

TmPR = CmPR = CmR = 0 

TRPm 0 

TRPR =I. 

(7.201) 

Since Ym is available as a measurement, it is only the unknown state vector 
ZR that needs to be determined. Expansion of Equation 7.197 gives the 
state equation for this unknown state vector as 

and the measurements are 

which can be written as 

Ym = CmmYm + CmRZR 
=Ym· 

(7.202) 

(7.203) 

where Ym is known to be representing some of the untransformed states 
Xm. Now, suppose that the unknown state vector XR, which has been 
transformed by P to zR, is estimated as ZR, this estimation will affect 
the measurement y R only and the corresponding measurement residual Yr 
becomes 

(7.204) 

As done before, the estimation process requires that this residual be fed 
back to the estimation model through the estimator gain LR, which alters 
the model dynamics to 

ZR = ARmYm + ARRZR + BRU + LRYr (7.205) 

= AnmYm + ARRZR + BRu + LR [(YR- CnmYm) CHJ~ZR] 

= (ARR- LnCRR) ZR +(ARm- LRCRm) Ym + BRu + LRYR· 

The transformed reduced state estimate ZR is thus the solution of this 
equation. The estimator design is thus that of selecting the gain LR, which 
will ensure that the estimated vector ZR gives a fair representation of the 
true states by minimizing the estimation error zn. 
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Defining the estimation error as 

(7.206) 

It can be shown that by taking the time derivative of this error and using 
Equations 7.202 and 7.205, this error will have the dynamics described as 

(7.207) 

which on replacing y R and doing some simplifications and rearrangements, 
becomes 

ZR = (ARR- LRCRR) ZR ~ (ARR ~ LRCRn) ZR ~ LRDRu 
= (ARR ~ LRCRR) ZR ~ LRDRu. (7.208) 

Since u is a control forcing function, the homogeneous solution of this error 
dynamics equation is 

(7.209) 

The estimate ZR becomes more acceptable as a true estimate of the state 
ZR if the error ZR is minimized. For this error to decay to zero over a short 
timet, the closed-loop system - LRCRR must have eigenvalues that 
arc large and negative, i.e., the roots of the characteristic equation 

(7.210) 

should be large and negative. This calls for large gain LR. Reduced-order 
estimator thus becomes that of selecting the gain matrix LR provide the 
reduced submatrices ARR and eRR are known according to Equation 7.210 
where 

ARR = TRAPR 
CRn = CRPR. 

The transformation matrices P R, T R and the subma trix C R are all prede-
termined as explained. Normally Equation 7.210 is written as 

(7.211) 

which essentially represent the same thing. 
After this point, all that remains is the same as that of a f,!ll-orcler 

estimator, as explained previously. All methods that apply to the full-
order estimator can also be applied to this reduced-order estimator. The 
estimator output in this case is ZR, however, it is required that the output 
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should be therefore, the estimator output is then re-transformed back 
to the original state X.n by 

(7.212) 

Notice that, if all measurements do not give the states directly, then Cm 
and hence will be dimensionks,.; null matrices. Thus, T m and will 
also be dimensionless null matrices, which results in dimensionless matrices 
Amm, Arlm: Amn, Cmm, GmH and Cnm· This leavec; matrix Ann with 
the same dimension as that of A while matrix C nn will have the dimension 
of C. The reduced-order estimator then becomes the full-order estimator. 

The main disadvantage with the estimator just described is that it re-
quires that there must be some measurements Yn that do not provide suf-
ficient information for determination of some of the elements in the state 
vector. If t!Jc whole of the measurements vector contains information that 
leads to direct determination of some of the state vector, but not the whole 
state, in which case y R and hence C n becomes zero, thi:::; method fails. 

Consider, for example, for the state and measurement vector described 
by Equations 7.188 and 7.189, the output (measurement) matrices are 

[
20000] 

C= 01000 
00300 

D = [0], 

and hence, the measurement vector is given by 

As can be seen, the whole of this measurement vector can be used to de-
termine the states x1(t), x2 (t)and x3(t) directly. There is no measurement 
component that is not directly linked (one-to-one link) to the state ele-
ments, as such y R is zero, which then leads to C R and C nn being zero. 
This means the characteristic equation given in Equation 7.210 reduces to 

ar'(s) ~ det [si- Ann]= 0, (7.214) 

which does not help anything toward the estimator design. To resolve this 
problem, a different approach is used, although the fundamental principle 
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of transforming the system so that the state vector can be shown as an 
augmented vector of the states w hic:h are directly available as measurernent:o 
Ym and those which are not available directly from the measurements ZR. 

Since C R is a null matrix of zero dimension, then both T R and P R and 
null matrices of zero dimension so that 

T= 

Then 

and 

which can be partitioned as 

and P= 

Amm = TmAPm 
=TAP 

Cmm = CmPm 
=CP, 

(7.215) 

where lm is an identity matrix whose dimension is the same as that of 
the measurement vector. The transformed system matrix Amm can be 
partitioned arbitrarily to conform with the partitioning of the transformed 
state vector z as 

A= [A;; .•. A.'.'1 
A21 : A22 

(7.216) 

and also 

(7.217) 

Therefore, the complete state description of the transformed system be-
comes 

[::] r::: . :::1 [::] + [:} 
(7.218) 

[Y J [ Im 0] [ :J (7.219) 
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Expansion of these equations give 

Ym = AuYm + A12ZR + B1u 
ZR = A21Ym + A22ZR + B2u 

Y=Ym· 

(7.220) 

(7.221) 

(7.222) 

Now, if ZR is a vector of the estimates of the unknown states, then the 
measurements residual Yr can be calculated directly from the measured 
state Equation 7.220 instead of the measurement Equation 7.222 as 

(7.223) 

This is the basic difference between this approach and the previous ap-
proach. As usual, this residual is fed to the unknown state equation through 
the estimator gain LR in the estimated dynamics of the following form 

(7.224) 

On replacing Yr from Equation 7.223, this equation can be expanded and 
rearranged as 

ZR = (A22- LRA12) ZR + (A21- LRAn) Ym + (B2- LRBl) U + LRYm· 
(7.225) 

On replacing by Equation 7.220, and taking similar approaches as shown 
before for the other methods, the error dynamics can be expressed by using 
equations 7.221 and 7.225, which becomes 

(7.226) 

which give::J 

(7.227) 

According to the principle of estimation that requires this error to decay 
to almost zero, there is a need to select L large enough so that the roots of 
the equation 

(7.228) 

are large and negative. The steps that follow are the same as those discussed 
before. The estimator output will be ZR, and has to here-transformed back 
to the original state of the system XR by the tram,;formation 

(7.229) 

Thus, completing the estimation process. 
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7.9.4 Compensator Design: Control Law and Estimator 

So far, the previous discussion on control and estimator design has been 
treating the two problems as independent of one another. No explicit men-
tion of the effect of the dynamics of the estimator on that of the controller 
or vice versa, has been made. In both cases, it was assumed that there 
is no input reference signal r(t) for the system to track, in which case the 
control system was a regulator. This section examines the combined system 
dynamics under the effect of both the controller and the estimator in the 
presence of the reference signal r(t). Such a system is shown in Figure 7.8. 

r(t) + ---- u(t) I l--------•·1 Plant I t__ _____ __J 

c__ _ __.,.l Estimator I l.__ __ .,-_ ___.1 

A 

K 
x(t) ------' 

Controller 

FIGURE 7.8 
Combined Control Law and Estimator 

Consider the plant given by 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t), 

y(t). 

and controlled by a full state feedback controller K in the presence of a 
reference signal r(t) such that the control signal becomes 

u(t) = -Kx(t) + r(t). 

Since the actual state x(t) of the system for feedback is not available as 
mentioned in the previous sections, the estimated state x(t) is the one that 
is fed back so that 

u(t) = -Kx(t) + r(t), (7.230) 

where this estimated state is generated by an estimator that has a general 
form 

x(t) = Aex(t) + Bu(t) + Ly(t), 
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and Ae is the estimator closed-loop matrix. Recall that for a full-order 
estimator 

Ae =A-LC (7.231) 

and for the reduced-order estimator, there are two forms used to represent 
Ae, as discussed in the preceding section. 

A popular design criterion for estimators is the reduction of the estima-
tion error x(t) whose dynamics has been found to be 

. . 
x(t) = x(t)-x(t) 

= Ae [x(t) - x(t)] 

= Ae:X:(t). (7.232) 

The closed-loop dynamics of the plant in the presence of both the controller 
and the estimator becomes 

:X(t) = Ax(t) + B [-Kx(t) + r(t)] 
= Ax(t) - BK:X(t) + Br(t), 

which, on eliminating :X using the relation 

x(t) = x(t) - x(t) 

gives 

x(t) = (A- BK)x(t) + BK:X:(t) + Br(t). 

Similarly, the output equation becomes 

y(t) = Cx(t) + D [-Kx(t) + r(t)] 
= Cx(t) - DK:X(t) + Dr(t) 

= (C- DK) x(t) + DK:X:(t) + Dr(t). 

(7.233) 

(7.234) 

(7.235) 

Combining Equations 7.232, 7.234 and 7.235 into matrix equations gives 

[ ~(t)l = [A-BKBK] [:(t)] + [B] r(t) 
x(t) 0 Ae x(t) 0 

(7.236) 

y(t) = [ C- DK DK) [ ~~g] + [D] r(t). (7.237) 

In most cases, the systems of interest are causal, in which case the feed-
foward matrix D is zero, hence, the output equation can be written as 

y(t) = [ c 0] [ ~~~n (7.238) 
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The characteristic equation of this system is 

Since the augmented system is block triangular, the characteristic equation 
can be written as 

1/J(s) = det [si- (A- BK)]. det [si- Ae] = 0. 

This indicates that the closed-loop poles of the whole system are just the 
poles of the plant that result from the selection of the feedback gain K 
and the desired estimator poles, as dictated by the estimator closed-loop 
system matrix Ae, which depends on the choice of the estimator gain L. 
Thus, the state feedback gain K and the estimator gain L can be selected 
separately for the desired closed-loop behavior. This means that the design 
of the feedback controller and that of the state estimator can be carried out 
separately. This is a special case of what is known as the separation prin-
ciple, which holds when noise and other additive disturbances are included 
in the system. 

The closed-loop transfer function GcL(s) from the reference input signal 
r(t) to the output measurement y(t) can be determined using the same 
principles as discussed before. 

Define 

A*= [ A~BK BK] 
0 . Ae 

C*= [ C; 0] X* 

B' ~ [: l 
[:] 

(7.239) 

(7.240) 

The system and the output Equations 7.236 and 7.238 can then be written 
in compact form as 

X*= A*X*+B*r 
y = C*X* 

so that the closed-loop transfer function becomes 

GcL(s) = C*(si- A*)- 1B*. 
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Reusing the original matrices given in 7.239 and 7.240 gives 

which, by the advantage of the triangularity of the block diagonal aug-
mented matrix A* reduces to 

GcL(s) = C [si- (A- BK)r 1 B. (7.241) 

This is exactly the same result as that obtained when full state feedback is 
applied. 

In order for the estimator error to vanish quickly in the augmented sys-
tem, it is required that the estimator poles be chosen to be faster than 
those of the closed-loop poles, at least twice as much. 

7.10 Problems 

Problem 7.1 A linear system 

X:= Ax+Bu 

y = Cx+Du 

has D = 0, where the plant and input matrices (A, B) are given by 

([ ~i -20] [1]) 
(A, B) = ~ ~3 ~ , ~ 

(a) Discuss the controllability and stability of this system 
(b) Determine the feedback matrix K that will place the poles of the sys-

tem at -1,-1 ±j. 

Problem 7.2 For the linear system 

x=Ax+Bu 

y = Cx+Du, 

[0 0 -1] 
A= 1 0-3 , 

0 1 -3 
[0 1 OJ 

C= 001 ' D=[O]. 



State Space Design Methods 565 

(a) Design a full-order state estimator for the system. 
(b) Find an optimal control that minimizes the cost function 

where 

[3 0 0] 
R =I, Q = 0 2 0 

0 0 1 

Problem 7.3 A linear system is described by 

x= [~2 ~2 i] x+ [~] u 
0 -3 -2 2 

y = [ -11 0) X. 

Using standard notat·ion used in this chapter 
(a) Find the transfer function of this system and establish its controlla-

bility, observability and stability. 
(b) Find a non-singular transformation T such that r- 1 AT is diagonal. 
(c) Determine the state-transition matrix cp(s). 

Problem 7.4 The state transfer function G(s) is given by 

G(s)=. s2 +7s+10 .· 
s3 + 8s2 + 19s + 122 

(a) Find the controllable and observable canonical forms of the system. 
(b) Draw the signal flow graph for the canonical form in (a). 

Problem 7.5 Optimization theory is a wide subject that was introduced in 
this chapter as a way towaTd optimal control theory. Use the given intro-
duction to establish the minimurn of 

subject to the conditions 

where 

f(x) = x1, 

(x1 - 1)2 + :r;~ = 1 

(:r1 + 1) 2 +x~ = 1, 
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Problem 7.6 Obtain a state-space representation for a system whose dif-
ferential equation is given by 

·:r· + 3x + 3x + x = u + u, 

where the output is y = x. 
(a) Use this result to determine the system transition matrix ¢(t) and 

¢(s). 
(b) Use Ackermann's formula to determine the controller K that places 

the roots of this system at -1,-2 ± 2j. 

Problem 7.7 (a) Check the controllability and observability of the follow-
ing two systems. 

[ 1 4 3] [-1] x = 0 2 16 x+ 0 u, 
0 -25 -20 0 

y=[-130]x 

x = [ ~ ~ ~ ] x+ [ ~ ] u, 
-2 -4-3 -1 

y = [1 o o] x. 

(b) For each of the systems of part (a), find the contmllable modes, un-
controllable modes, obscTvable modes, and unobservable ·modes. (Hint: use 
the MATLAB comrnands ctrbf and obsvf. ) 

(c) For each of the systems of part (a), assuming the states are available 
for feedback, determine whether a state feedback controller can be des·igned 
to stabilize the system. 

(d) For each of the systems of part (a), assuming the states aTe not avail-
able joT feedback, determine whetheT a controlleT together with an observer 
can be designed to stabilize the system. 

Problem 7.8 A certain system with state x is described by the state ma-
trices 

A= [ =~ ~] , B = [ ~] 
C = [ 1 0] , D = [OJ . 

Find the transformation T so the if x = Tz, the state matrices describing 
the dynamics of z are in control canonical form. Compute the new matrices 
Az, Bz, , and 
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Problem 7.9 Consider the control i!ystem shown below. 

(a) Find the transfer function fmm U(s) to Y(s). 
(b) Write the state equations for the system using the state variables 

indicated. 

Problem 7.10 Using the indicated state variables, obtain the stale equa-
tions .for the two systems shown below. Find the transfer- function for- each 
system using both block-diagram manipulation and matr-ix algebm. 

1 
s+4 

51------' 

y 

Problem 7.11 For each of the tnmsfer functions below, wr-ite the state 
equations in both contml and observer- canonical for-m. In each case, dmw 
a block diagram and give the appmpriate expressions for A, B, and C 

(a) 

(b) 

s2 + 1 
s2(s2 - 1) 

3s+4 

s2 + 2s + 2 

(contr-ol of an inverted pendulum) 
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Problem 7.12 The linearized equations of motion for a satellite are 

where 

:X= Ax+Bu 

y = Cx+Du 

A= r 3~~ 2 ~ ~ 2~ 1 r ~ ~ 1 [ 1 0 0 0 J 
0 01 'B= 00 'C= 0010' 

-2w 0 0 0 1 

D= [OJ 

The inputs u 1 and u 2 are the radial and tangential thrusts, the state vari-
ables x1 and x2 are the radial and angular deviations from the reference 
(circular) oTbit, and the outputs y1 and y2 are the radial and angular mea-
surements, Tespectively. 

(a) Show that the system is controllable using both control inputs. 
(b) Show that the system is controllable ·using only a single input. Which 

one is it? 
(c) Sho·w that the system is observable using both measurements. 
(d) Show that the system is observable us·ing only one measv.rement. 

Which one is it 9 

Problem 7.13 An unstable robot system is described by the vector differ-
ential equation 

!!__ [X1] = [ 1 OJ [X1] + [1] u(t). dt Xz -1 2 xz 1 

Both state VaT"iables are measurable, and so the control signal is set as 

u(t) = -K(x1 + xz). 

(a) Design gain K so tho.t the performance inde:r; is minimized. 
(b) Eval1wte the minimum value of the performance index. 
(c) Determine the sensitivity of the performance to a change inK. 
Assume that the initial conditions are 

x(O) = [n. 
(d) Is the system stable without feedback signals due to u(t) 9 
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Problem 7.14 A feedback system has a plant tmnsfer- function 

G s _ Y(s) _ K 
( ) - R(s) - s(s + 70) 

It is desir-ed that the velocity er-mT constant, Kv be 35 and the 011ershoot 
to a step be approximately 4% so that~ is 1/J2. The settling time (2% 
cr-iter-ion) desir-ed is 0.11 sec. Design an appropr-iate state var-iable feedback 
system. 

Problem 7.15 The following differential equations represent linear time-
invariant systems. Write the dynamic equations (state equations and output 
equations) in vector- form. 

(a) d2 y(t) d1') (t) -- + 4 _. - + (t) = 5 (t) dt2 dt y T 

(b) d3 (t) d2 (t) d (t) 
2-y- + 3-y- + 5-y- + 2y(t) = r(t) 

dt3 dt 2 dt 

(c) y(T)dT = r-(t) 

(d) d4y(t) + ~ d3y(t) + ~ dy(t) + y(t) = 2r(t) 
dt4 2 dt 3 2 dt . 

Problem 7.16 A linear time-invar-iant system is descr-ibed by the differ--
ential equation. 

d3y(t) 3d2 y. (t) dy(t) ()- ·() 
d 3 + d2 +3d +yt-rt. t t .t 

(a) Let the state var-iables be defined as x1 = y, Xz = dyjdt, x 3 = 
d2 y / dt 2 . Wr-ite the state equations of the system in vector-matrix for-m. 

(b) Find the state-tmnsition matr-ix cp(t) of A. 
(c) Let y(O) = 1, dy(O)/dt = 0, d2y(O)/dt2 = 0, and r-(t) = u 5 (t). 

Find the state tmnsition equation of the system. 
(d) Find the chamcteTistic equation and the eigenvalues of A. 
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Chapter 8 

Digital Control Systems 

8.1 Introduction 

With the breakthrough in computer technology (both hardware and soft-
ware), there has been widespread use of computers as controllers for a 
broad range of dynamic systems. In fact, most control systems that are 
implemented today are based on computer control where digital computers 
(usually microprocessors) are used. However, a computer has three main 
features that distinguish its performance as a controller, from classical ana-
log controllers. In the first place, the computer is a sequential machine that 
executes one instruction at a time, as such, the signals on which it works 
are discrete-time as opposed to continuous-time signals. On the other hand, 
the signals found from most physical systems are naturally continuous in 
time. Therefore, there arises a need to discretize the system signals so 
that they can be handled by the computer in digital control. Secondly, the 
computer works on finite digital signals (numbers) as opposed to analog 
signals, which are normally found in real-life systems. Again, this calls for 
signal digitization, which, together with the discretization, if not properly 
handled, will have some undesirable effects on the system being controlled. 
Furthermore, unlike analog electronics digital computers cannot integrate. 
Therefore, the differential equations describing system compensation must 
be approximated by reducing them to algebraic equations. 

This chapter introduces the principles involved in digital control systems 
and discusses the issues that arise in the design and implementation of digi-
tal controllers. In particular, the motivation is to develop effective methods 
so that the digitization and discretization effects of continuous-time analog 
signals are eliminated or rather, minimized. The chapter proceeds by cover-
ing sampled-data systems, discrete-time systems, and the design of discrete 
time controllers. In particular, the discrete time PID controller is presented 
and appraised. Extensive examples, including MATLAB implementation, 
are used to illustrate the material. 

571 
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8.2 Sampled Data Systems 

8.2.1 General Structure 

Under digital control, the controller is normally a digital computer, whereas 
the environment being controlled is usually characterized by continuous-
time analog signals. This creates a system with a hybrid of signals, i.e., 
some points have analog signals while other points have digital signals. 
Such systems are generally known as sampled data systems, meaning that 
analog signals are sampled to repre'lcnt discrete-time digital signals and 
vice versa. Some means of interfacing the digital computer to the analog 
environment must be provided. In most applications, the interfacing is 
provided through the Digital to Analog (D /A) and the Analog to Digital 
(A/D) converters. 

The A/D converter takes analog measurements from analog environments 
and converts them to digital signals which can then be used by the com-
puter. On the other hand, the D /A converter takes digital signals and 
converts them into equivalent analog signals, which can then be applied 
to the analog environment being controlled. Figure 8.1 shows the basic 
structure of the control system. 

-~----------------------
1 

The Digital Controller 

r(t) 

I 

L--------------------------' 

Both y(t) and r(t) are analog 

FIGURE 8.1 
Digital Control System: Analog Input and Output 

8.2.2 Data Sampling 

The process of data sampling can be viewed as an on-off switching process 
that takes on analog signals at some specific interval resulting in a train of 
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The Digital Controller 
I 

r~~~DIA 
~~--~. 
I 

I 
I I l ______________________ l 

r(t) is digital while y(t) is analog 

FIGURE 8.2 
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y(t) 

Control Systems Structure: Analog Output and Digital Input 

impulses. At the end of each switching pulse, the sampled signal is held at 
that level until the next sampling interval. In digital control terminology, 
the interface that takes on analog signals and converts them to digital 
signals in this fashion is called the sample and hold. There are two elements 
in the sample-and-hold unit. The first unit is called the sampler, which 
does the switching, and the second unit is called the hold, which, as the 
name implies, holds the sampled signal at the same level until the next 
sampling instant. This section discusses the principles of the sample-and-
hold process, which is divided into two parts, the "sampler" and the "hold." 

8.2.2.1 Analysis of the Data Sampler 

As noted before, the data sample can be viewed as an on and ofr switch 
that takes on analog signals, resulting in a train of impulses. A simple 
schematic diagram of the data sampler is shown in Figure 8.3. 

r(t) r*(t) 

FIGURE 8.3 
Simple Data Sampler 

The process sampling can be expressed as a product of the analog signal 
being sampled r(t) and the train of impulses L;o(t - kT) where T is the 
sampling interval and k is a series of integers, 0,1,2,3,4..... so that the 



574 Design and Analysis of Control Systems 

sampled signal r*(t) or the discrete signal can lJe expressed as 

r*(t) = L r(t)6(t- kT), (8.1) 
k=-00 

where 6(t) is the Dirac delta function. This mathematical representation is 
technically known as impulse modulation and, in the analysis, it is repre-
sented as a sample-and-hold process. The time interval between the consec-
utive sampling instants is known as the sampling interval, and for periodic 
sampling, it is constant. The sampling frequency or simply the sample rate, 
expressed in samples per second (or Hertz), is the reciprocal of the sampling 
interval 

1 is= T (Hz), 

where is is the sampling frequency. Note that if is the number of discrete 
samples per unit time( say per second) then there will be Ns sampling 
intervals T in this unit time. Thus 

(8.2) 

which shows that the frequency is equals the number of discrete-time sam-
ples Ns per unit time. Most often it becomes necessary to express the 
sampling frequency in radians per second. Mathematically, 

27T 
Ws = 21Tis = T' 

where Ws is the circular or sampling frequency in radians per second. ]\i[ath-
ematical analysis of the sampled signal can be carried out using the Laplace 
transform analysis, Fourier analysis or Z-transform analysis. The Fourier 
transform and the Z-transform analysis will be described later, at this stage 
the Laplace transform (a more familiar technique) analysis is presented. 

If the Laplace transform of the sampled signal is carried out on Equation 
8.1 then 

£ [r*(t)] = R*(s) =I: r*(T)e-sT dT, 

which gives 

Interchanging the summation and the integration gives 

00 JCXJ R*(s) = L r(T)e-sT D(T- kT)dT. 
k=-oo -oo 

(8.3) 
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If T = kT, this equation simplifies to 

(8.4) 

For all functions j(t) which are continuous at.:;, the impulse function 5(t) 
has a shifting property given by 

1: f(t)8(t- .:;)dt = f(f,). 

This property, when used in Equation 8.4 gives 

'Xl 

R*(s) = e-skT r(k:T). (8.5) 
k=-oo 

The sampled signal is normally defined for positive integers k. Hence, 
the range of integers from -oo to 0 (two-sided Laplace transform given in 
this equation) are rarely used. In most cases, it is the one-sided Laplace 
transform defined as 

00 

R*(s) = I>-skT r(kT) (8.6) 
k=O 

that is used. This transform, Equation 8.6, gives the continuous-time model 
of the sampled data signal and also a mathematical model of the sampler. 

8.2.2.2 of the Hold Operation. 

The hold operation takes the impulses produced by the sampler to pro-
duce a piecewise constant signal of the sample-and-hold device. It is nor-
mally presented as a linear filter. Depending on the degree at which the 
sampled signal is held, sever<1l forms of hold unitt> can be defined. However, 
the most common forms of hold arc the zero-order hold (ZOH), and the 
first-order hold (FOH). The ZOH maintains the t>ampled signal at a con-
stant level, while the FOH holds the signal linearly between the sampling 
instants. Since, in sampling processes, the next sampling value is never 
known, this type of hold (FOH) is never used in the sample-and-hold oper-
ation, though it might be used in the signal recovery (data extrapolation) 
process, which will be discussed in the next sections. The only feasible hold 
used in this case is the ZOH that it> modeled as shown in Figure 8.4. 

For any sampled signal input r* ( t), the output of the ZOH is defined as 

TH(t) = r(kT) kT :::; t :::; (k + 1 )T. 
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FIGURE 8.4 
ZOH Model 

Design and Ana.lysis of Control Systems 

r*(t) ... 1 '-___ z_o_H __ ___,I---r H~C!.-) 

Therefore, its transfer function can be defined as 

ZOH(s) = £[rH(t)], 
£[r*(t)] 

(8.7) 

Considering single sampling instants, the ZOH receives only one impulse 
from the sampler, not the whole train of impulses, therefore, 

r*(t) = 8(t). 

If this impulse is of unit strength, then rH(t) will be a pulse of unit height 
and duration T (equal to sampling interval). Using the time delay function, 
the impulse response of the hold can be shown to be 

TH(t) = l(t) ~ l(t ~ T), 

where l(t) is the unit step function. Therefore, the transfer function in 
Equation 8.7 can be derived as follows: 

so that 

ZOH(s) = £[rH(t)] 
£[r*(t)] 

£[1(t) ~ l(t ~ T)] 
£[8(t)] 

s s 
1 

1 e-sT 
ZOH(s) = ---

s 
(8.8) 

Thus, the whole A/D converter, which acts as a sample-and-hold unit, can 
be modeled as a combination of a sampler and a ZOH whose diagrammatic 
representation is shown in Figure 8.4. 

In real practice, there is no interest in the intermediate signal r* ( t). 
Normally it is the output of the hold unit that is of interest, because even 
if one wanted r*(t), there is no way it could be obtained from the A/D 
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r-----------------------------1 
I T I 

~ r*(t) "'I ZOH lf---1-i ---'rH'--(.,..~ 

FIGURE 8.5 
Sampler and ZOH 

I 
I 
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converter. For this reason, the transfer function of the whole A/D converter 
is regarded as just the transfer function of the ZOH unit. For notational 
convenience, the sampled signal r(kT) where Tis the sampling period will 
just be presented as r(k) unless where the context makes it necessary to 
present it as r(kT). Generally, signals of the form r(kT ± nT) for any 
k, n =:' 1, 2, 3, 4 ... will be presented simply as r(k ± n). 

Example 8.1 A continuous-time signal 

r(t) = 2 sin 4t +cos 2t 

is sampled at a sampling rate of 10 radjsec using a ZOH. If the sampling 
starts at the time when t = 0, determine the sampling interval T, sample 
rate in samples per sec and the sampled value when t 4 sec. 

Solution 8.1 Since, W 8 = ~, the sampling interval can be calculated as 

0.628 sec. 

Also the sampling rate in samples per sec is 

1 
Ns = fs = T = 1.59 samples/sec 

at t = 4 sec, the complete samples covered will be 

N = trunc (f) 
= trunc ( o.:28 ) 

=6, 
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i.e., the whole number of the samples covered so far due to ZOH operation 
is k = 6. Since the sample value at any instant k is 

r(k) = r(t)8(t- k) 
= (2 sin4t +cos 2t)(8(t- k)). 

The sample value at k = 6 becomes 

r(6) = 2sin(24) + cos(12) 

= -0.967. 

8.2.3 Characteristics of Discrete Time Signals 

8.2.3.1 Fourier Series Representation of Discrete Time Signals. 

It is well known that any periodic signal has the property of repeating 
itself. For continuous-time signals, the periodic property is expressed as 

r(t) = r(t + T), (8.9) 

where T is the period, in time units, of the signal when the signal has the 
same value as that in the previous period. For discrete-time signals the 
periodicity is measured in terms of the number of the signals. Normally 
the periodic property of discrete-time signals is given as 

r(k) = r(k + N), (8.10) 

where N is the period given in number of samples that the discrete samples 
assume their previous values cyclically. By Fourier theory, any periodic 
signal can be represented as a sum of the harmonics of the fundamental 

frequency w = ~. (The reader should not confuse this period N and the 

sampling frequency N 8 given in Equation 8.2). This is done for periodic 
discrete-time signals as 

00 

r(k) = L (8.11) 
n=-oo 

where j = yCI. To determine the coefficients an, let n = m and multiply 
both sides of this expression by e-ie!t)k to get 

00 

r(k)e-ie'j,t)k = L ame2.,..j(miin)k 
m=-oo 
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Since r(k) = r(k + N) and there are N distinct values of n in one period 
then summing both sides of this equation over one period [0, N- 1] then 

N-1 N-1 oo 

L r(k)e-j(2;;n)k = L L ame2nj("'jVn)k 

k=O k=O m=-oo 
oo N-1 

= 2:: amL:e2nj("'jVn)k (8.12) 
m=-oo k=O 

If (m- n) is an integer multiple of N, then 

where c = 0, ±1, ±2, · · · , · · · 

=COS 21fC 

= 1 for all c. 

Therefore, 

N-1 N-1 
Le2nj("'jVn)k = L1 = N 

k=O k=O 

On the other hand, if m;; n is not an integer multiple of N, i.e., m;; n 
=/:- c for some integer value c, then by letting 

it follows that 

N-1 N-1 
Le2nj("'jVn)k = L~k 
k=O k=O 

1 - e2nj(m-n) 

=0. (8.13) 

These results can then be combined in a single expression 

N-1 
LeZnj("'jVn)k = N8(m- n- eN) 
k=O 



580 Design and Analysis of Control Systems 

so that finally 

N-1 oo 

l:r(k)e-ieNn)k= 2.:: Nam8(m-n-cN). 
k=O m=-oo 

The summation on the right is carried over N consecutive values of m for 
a fixed value of n, therefore, the value that c can take in the range of the 
summation is zero for which the only non-zero value in the sum is when 

8(m-n)=1 

this requires that the non-zero value is when m = n thus 

N-1 I: r(k)e-j( 2 Nn)k =Nan 
k=O 

or 

N-1 
- _!_ 2.:: (k) -j(12ID.)k an- r e N 

N k=O 
(8.14) 

Since this summation is periodic with period N, it can be taken over N 
successive values of N. The same observation can be made for Equation 
8.11. Based on these facts, for simplicity both these equations can be 
written as 

N-1 

r(k) = l:ane21ri(N-)k 
n=O 

N-1 
- _!_ "' (k) -j( 2-n-n )k an-N ~r e N , 

k=O 
(8.15) 

which together form the discrete-time Fourier series pair expressing the 
discrete-time signal. Using the fact that 

r(k) = r(k + N) 

It can also be shown that 

8.2.3.2 Spectrum of Sampled Signal 

The spectrum of the sampled signal refers to the frequency components 
found in a sampled data signal. To study the spectrum of the sampled 
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data signal, deep understanding of the Discrete Fourier transform (DFT) 
is required. Recall that the sampled signal is expressed as 

00 

r*(t) = L r(t)l5(t- kT) 
k=-oo 

= r(t) L 15(t- kT) (8.16) 
k=-00 

If the sampling interval is constant, then by using the Fourier series the 
impulse train can be expressed as 

00 00 

(8.17) 
k=-cc n.=-oo 

where the Fourier coefficients Cn are given as 

(8.18) 

Since the integral is taken within the range [-T, T] , then the impulses 
2 2 

in the summation for which this integral holds occurs when k 0, thus the 
expression for the Fourier coefficients reduce to 

T 

1 !2 . (2"') Cn = T -T 15(t)e-Jn r- dt, 
2 

(8.19) 

and since 

T ! 2 . (2"') 
-T 8(t)e-.7n r- dt = 1 

2 

then the Fourier coefficients for the whole pulse train assume only one value 
given as 

(8.20) 

Hence, the Fourier series of the sum of pulses becomes 

f 15(t- kT) = ~ f e2rrj(iZJ)t. 

k=-oo n=-oo 
(8.21) 
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On introducing the sampling frequency W 8 

Equation 8.21 becomes 

2n 
T in radians per second, 

00 1 00 L o(t- kT) = T L ejnw.t. (8.22) 
k=-c:x::J n=-(X) 

Using this equation, the sampled signal in Equation 8.16 is expressed as 

(8.23) 

The Laplace transform of Equation 8.23 is given by 

R*(s) = £(r*(t)) 

Using the shift in frequency theorem for Laplace transforms it can be noted 
that 

(8.24) 

thus 

1 00 

R*(s) = T L R(s- jnw 3 ) 

n=-oo 

1 00 

= yLR(s±jnw 8 ) 

n=O 
1 = 

= rLR [j (wa ± nws)J. (8.25) 
n=O 

This indicates that the sampled signal train has an infmite number of fre-
quencic:o tlt<lt are all integral multiples of the sampling frequency W 8 • This 
situatiou cal! be illustrated graphically. 

8.2.8.3 Aliasing (Frequency Folding) and the ---·--1,-----a Theorem 

It has been fihown that the sampled data signal contains 
are multiples of the sampling frequency. If the fundamental 

that 
I r(t) 
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contains a frequency w, then by defining 

s =jw 

the sampled signal R* ( s) can be defined in the frequency domain as 

1 00 

R*(w) = T '2.: R(j(w ± nw8 )), 

n=-oo 
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(8.26) 

which indicates that the sampled signal will have frequencies w ± nw s for 
some integer n. However, generally the signal being sampled will not contain 
only one frequency; it will have several frequency components defining its 
natural frequency band (spectrum) as shown. Therefore, the sampled signal 
frequency spectrum becomes an infinite number of these imlividual spectra 
spaced by an interval W 8 corresponding to the sampling frequency. Now, 
if the sampling frequency is low, then the low- and the high-frequency 
components of each of these spectra will overlap with the low frequency 
components of the adjacent spectrum. This phenomenon of overlapping is 
known as aliasing or frequency folding. The lowest frequency component 
at which aliasing occurs is known as the aliasing frequency Wa and is given 
by 

Wa. = lws ±wl 
Aliasing is a phenomenon that should be avoided when designing digital 
controllers because, when this occurs, it becomes impossible to recover all 
the fundamental frequency components. It should be recalled that although 
under digital control one deals with discrete signals, the ultimate goal is 
to recover the cont.irmons-time (analog) signals that are natural using the 
D /A converter. This goal cannot be reached when aliasing occurs. 

The phenomenon of aliasing has a clear meaning when explained in the 
time domain. Consider two sinusoidal signals at frequencies w 1 and w2 

1 1 . . 
where w1 =/= w2 (assume w1 = 2000 , and w2 200 as shown m F1gure 8.6). 

Clearly, one sees from Figure 8.6 that the sampled signal in both r 1 (t) and 
r 2 (t) are the same. In that case, recovery of both r 1 (t) and r 2 (t) is not 
uniquely possible. Generally, the two different frequency signals appear to 
be the same after sampling. It can be inferred from this observation that 
in order to preserve the signal information during the sampling operation, 
the sampling instants must be sufficiently close. 

Several measures can be taken against the effects aliasing phenomena in 
digital control such as the use of anti-aliasing filters, and the application of 
Shannon's sampling theorem. These will be discussed in detail in the later 
sections. Presently, the sampling theorem that results will be discu::;sed 
directly from the observation of the sampled signal spectrum. Before dis-
cussing the theorem, the term will be encountered mostly in the discussion 
of sampling is defined and its related theorem. 
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FIGURE 8.6 
Two Sinusoidal Signals 

Definition 8.1 !f, in the sampled data system, w_, is the sampl-ing fre-
quency in radians per second, then half the value of this frequency is called 
the Nyquist frequency WN = ~s. This is the maximum frequency in the 
fundamental signal that can be recover-ed completely without distor-tion after 
sampling. 

A corollary to this definition of the sampling theory is the following 
theorem: 

Theorem 8.1 A cont·inuous-time signal r-(t) with fr-equency spectrum ( -w0 , w0 ) 

can be r-epresented uniquely by its values ·in equidistant points if the sampling 
frequency W 8 is higher than 2wo as 

( ) _ ~ ·(V sin ((ws(t- kT))/2) 
r t - L..-. r c) (w 8 (t- kT)/2 . 

k=-oo 

(8.27) 

Proof. This theorem has two parts: one that states the conditions under 
which sampling will not distort the signal and another that shows how to 
reconstruct the continuous-time signal. The proof for the second part will 
be given under the discussion on data extrapolators and impostors. Only 
the proof for the first part is given here. It is based on the observation that 
the samples r( k) can be regarded as the coefficients of the Fourier series of 
the sampled signal and that the function being sampled is zero outside the 
frequency range ( -wo, w0 ) 
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It is known that the Fourier transform of r(t) is 

R(w) =I: r(t)e-jwtdt 

so that 

r(t) =I: R(w)ejwtdw 

where the frequency of the sampled signal is 

Wd = w±nws 
n = 0, 1, 2, · · · 

The following function can be defined 

1 00 

Rs(wd) = T L R(w + nw8 ), 

n=-(X) 
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(8.28) 

271' 
where T = is the sampling interval. The Fourier expansion of this 

function is 

00 

Rs(w) = L Cke-jwkT 
n=-oo 

with Fourier coefficients Ck given as 

which simplifies to 

ck = r(k). 

The theorem requires that, for this result to exist, the function must be 
zero outside the frequency rage ( -wo, w0 ), therefore, it follows that 

Since Wd = wo + nw s, for adjacent spectra, take n = 1 so that wd = w0 + w s 
which then is the condition for which data recovery for the sampled signal 
is possible. • 
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8.2.3.4 Data Extrapolation and Impostors 

The process of recovering the continuous-time signal from the sampled 
data is known as the data extrapolation process. If anti-aliasing measures 
are taken properly during the sampling process, it becomes possible to re-
cover the information from the sampled data signal. The ideal element 
in the recovery would be a low pass filter that fills the gaps between the 
data samples by waves that have no frequencies above half the sampling 
frequency. However, such a filter is not causal in that it starts the extrap-
olation process at negative infinity time while the required signal occurs 
at zero time. For this and other reasons, a polynomial hold is normally 
used instead. There are two types of polynomial holds; the zero-order hold 
(ZOH) and the first-order hold (FOH). The ZOH is a model that main-
tains a constant signal between the samples. A/D converters discussed in 
the previous sections are good examples of ZOH and, as seen before, it is 
normally modeled as a ZOH. 

The best alternative to ZOH is the FOH, which extrapolates data be-
tween sampling periods by a first-order polynomial. However, because of 
hardware complexity associated with FOH, the ZOH has remained popular 
in almost all control applications. Be it a ZOH or FOII extrapolator, the 
output goes with unwanted harmonics known as impostors. In practice, 
the impostors are equally well processed with the required signal and then 
filtered out in the final stages using a low pass filter that leaves only the 
fundamental signal. 

8.2.3.5 Quantization Effects 

Since the sampled data must be processed by a computer that handles fi-
nite numbers with finite accuracy, this signal must thus be presented to the 
computer in that way. However, in practice, the control variables, despite 
being inaccurate, they are not generally finite numbers as presented to the 
computer. This produces errors in the control computation that are gen-
erally known as errors due to quantization, or simply quantization effects. 
These quantization effects can sometimes be very detrimental to the per-
formance of the controller if not properly addressed. In this section, some 
of the quantization effects, in particular the round-off errors, are discussed. 
Limit cycles that can also occur as quantization effects are introduced, but 
a detailed treatment will be given in the chapter that covers nonlinear con-
trol (Chapter 9). 
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8.3 Analysis of the Discrete Time Systems 

8.3.1 Difference Equations 

587 

It has been seen that the A/D converter feeds the digital computer sam-
ples of discrete-time signals T(k), which are sampled from the analog signal 
r( t) of the physical system at discrete-times. The computer takes these c;am-
pled values and woes some predetermined rule to compute the output digital 
signals, which are fed to the physical system as analog signals through the 
D /A converter. The issue of concern to control engineers is the relationship 
between the digital computer discrete inputs and outputs. Normally, the 
computer generates the output signals based not only on its current input 
but also on some of the past input and output values. If the input signals 
to the computer up to the k-th sample are r(O), r(l), r(3), · · · , 0 

• 
0 

, r(k) 
and the output signal prior to the sample times are u(O), u(l), u(3), · · · , 
0 

• • , u(k- 1), then the computer output at the sample time u(k) will be 
a function of both these sample values of the inputs and the outputs that 
can be expressed symbolically as 

u(k) = f(r(O), r(l), r(3), · .. , .. · ,r(k), u(O), u(l), v.(3), .. · , .. · , u(k- 1)). 
(8.29) 

The function J may be of any form, however, at present, it will be assumed 
to be linear depending only on a finite number of past values of the outputs 
and inputs. The word finite has been stressed to show that not all past 
values of inputs and outputs are actually used in the computation of the 
current output, though this loob like a more accurate approach. This is a 
consequence of the fact that computer memory is limited and cannot store 
all the possible past values. Imagine a process that continuously samples 
throughout a year at a sampling interval of 1 m sec. 

In this way, suppose that only n-past values of the output signal u(.) and 
m-past values of the input signal r(.) are required to compute the output 
signal at some instant k and the corresponding relationship between the 
these values is linear. Equation 8.29 can thus be written as 

u(k) = b0 r(k) + b1r(k- 1) + b2r(k- 2) + · · 0 0 0 
• + bmr(k- m) 

+ a1 u(k- 1) + a2u(k- 2) + .... · · + anu(k- n)o (8.30) 

This equation is known as a linear recurrence equation, or, simply, the 
difference equation. In standard form, it is normally arranged to have all 
the like terms collected on one side and expressed in one term as a sum. 
This form is 

n m 

(8.31) 
i=O j=O 
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where a0 is normalized to 1. The signal u( k - i) is the system output (or 
response) and r(k- j) is the forcing function. If the coefficients ai and bj 
are constants, the difference equation is known as the constant coefficient 
difference equation (CCDE) and has many similarities to the constant coef-
ficient linear ordinary differential equation .. It may be taken as the differen-
tial equivalent of a continuous-time system. The solution of this difference 
equation gives the value of the computer output at the sampling instant. In 
most cases, this computer output is the control signal required to provide 
the control action. 

In discrete-time systems, the difference Equation 8.31 is one of the most 
fundamental system characteristics that must be known to carry out the 
analysis. There are several ways of presenting and analyzing this difference 
equation. Before discussing these alternate ways of presenting the difference 
Equation 8.31, a general approach to solving such an equation is presented. 

8.3.1.1 Solution of the Difference Equation 

As seen in the preceding sections, the control signal u(k) computed by the 
digital computer is just the solution of the difference Equation 8.31. There 
are many other situations where the solution of this difference equation is 
important. In any case, some previous values prior to the sampling instant 
k must be known and, as noted before, these are the initial conditions that 
must be specified. 

Similar to the solutions of linear ordinary differential equations, this solu-
tion has two components: the homogeneous solution uh(k), which depends 
only on the initial conditions, and the particular solution 11-P(k), which de-
pends on the input forcing function. The general solution can be expressed 
by 

(8.32) 

Like solutions of the ordinary differential equations, the homogeneous solu-
tion is also known as the free response of the system, while the particular 
solution is known as the forced response. 

Consider a general expansion of the difference Equation 8.31, which can 
be given as 

aou(k) + a1u(k- 1) + a2u(k- 2) + · · · + anu(k- n) 
= bor(k) + b1r(k- 1) + b2r(k- 2) + · · · + bmr(k- m) 

The solution of this equation is 

1 [ m n l u(k) ao ~bjr(k- j)- 8aiu(k- i) (8.33) 
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Now if for all j = 0, 1, 2, · · · m and i = 1, 2, 3, · · · n the values of r(k- j) 
and u(k- i) are known, and the coefficients ai and bj are also known, then 
the solution u(k) can be determined easily by iterative substitution from 
these initial values. However, when the desired solution is at some instant 
far away from the initial time, this approach becomes very inefficient. In 
order to overcome this problem, more elegant methods that involve deter-
mination of both the homogeneous solution and the particular solution are 
normally employed. 

Example 8.2 Consider the difference equation in which the forcing func-
tion is exponential 

1 1 1 (1)k -u(k)- -u(k- 1) + -u(k- 2) = -
4 2 4 2 

Ifu(-1) = 1 and u(-2) = 0 determine u(k), u(O), u(2) 

Solution 8.2 Using Equation 8.33 the solution can be written as 

Therefore, 

u(k)=4[(~)k -~u(k-2)+~u(k-1)] 

=4(~)k -u(k-2)+2u(k-1). 

u(O) = 4- u( -2) + 2u( -1) 

=4-0+2 

=6 

u(1) = 4 (~r- u(-1) + 2u(O) 

= 2- 1 + 2(6) 
= 13 

u(2) = 4 (~r- u(O) + 2u(1) 

= 1-6 + 2(13) 

= 21. 
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8.3.1.2 Homogeneous Solution of the Difference Equation 

The homogeneous equation corresponding to the difference equation in 
8.31 is given by 

n 

l:).,u(k- i) = 0. 
i=O 

The solution to this equation is given by the exponential function 

so that substitution into the difference equation yields 

n n 

2.~>iAak-i = Aak2.=>ia-i = 0. 
i=O i=O 

Since the quantity Aak is never ;>;ero, otherwise the solution becomes trivial, 
therefore, the homogeneous solution must satisfy the algebraic equation 

n 
~ -i 0 La;o: = . 
i=O 

(8.34) 

This equation is the characteristic equation of the difference equation and 
the values of o: that satisfy it are called its characteristic roots or values. 
There are n-characteristic roots that may be either distinct or repeated. 
If the roots are distinct, the homogeneous :-;olution is obtained as a linear 
combination of the terms of the type o:~ such that 

If any of the rooLs arc repeated, then n-independent solutions are generated 
by multiplying the corresponding characteristic solution by the appropriate 
power of k. For example, if o:1 has a multiplicity of p, while the other n- p 
root;; are distinct, it is assumed that the homogencom solution is of the 
fon11 

1Lh(k) = A1o:~ + A2kct~ + · · · + AvkP- 1 o:~ + Av+lo:;+l 

+ Ap+2a;+2 + · · · +Ana~. 
Simultaneous solution of this equation for the different initial conditions 
will give the values of Ai and hence the homogeneous solution. 

Example 8.3 Consider the difference equation 

20u(k) - 19u(k- 1) + 5.5u(k- 2)- 0.5u(k- 3) = 0 

with u(-1) = 5, u( -2) = 11, and u( -3) = 13. Determine the characterisl.ic 
equation, characteristic mots, and the homogeneous solution and u(7). 
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Solution 8.3 Normalizing the eq1wtion (to rnakc a0 = 0) leads to 
19 11 1 

u(k)- 20u(k- 1) + 40 u(k- 2)- 40 u(k- 3) = 0 

Therefore, the characteristic equation is 

1 19 -1 + 11 -2 1 .· --3 0 - -a -o· - -(t = 
20 40 40 

or 
3 19 2 11 1 

(\'- 200: + 400:-40 =O, 

which can be factored as 

so that the characteristic roots are Ct1 = ~' 0:2 = i and 0:3 = i· Since the 
Toots are distinct, the homogeneous solution is of the form 

Substitution of the three initial conditions into the homogcnco'ttS solut·ion 
leads to three equations that can be used to solve for A 1 , A 2 , and A 3 . 

2Al + 4A2 + 5A3 = 5 

+ 16A2 + 25A3 = 11 

8A1 + 64A2 + 125A3 = 13. 

From these eq11.ations A1 = g, A2 = t' and A3 = -1~. The homogeneous 
sol·ution becom.es 

(l)k (l)k (l)k uh(k) == 1.1667 2 + 1.75 4 - 0.8667 5 
Using this expression, the solution at any instant k can be determined. For 
example, 

Uh(7)=1.1667(~r +1.75(~r -0.8667(~r 
= 9. 210 6 x w- 3 

As a check, note thai when k = -1, -2, or -3, the initial conditions are 
obtained. For example for k = -1 the homogeneous solution is 

(1)-1 (1)-l (1)-1 uh( -1) = 1.1667 2 + 1.75 4 - 0.8667 5 
= 5.0 

as expected. 
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In the following example a way of obtaining the homogeneous solution is 
demonstrated when the characteristic values are repeated. 

Example 8.4 Consider the following homogeneous difference equation 

12u(k)- 7u(k- 1) + 3u(k- 2)- u(k- 3) = 0 

with initial conditions u(-1) = 0.5, u(-2) = 0.7,and u(-3) = 0.4. Deter-
mine the chamcteristic equation, characteristic roots and the homogeneous 
solution u(1) and u(2). 

Solution 8.4 The ·rwrmalized equation is 

u(k) 
7 3 1 -u(k- 1) + -u(k- 2)- -u(k- 3) = 0 
12 . 12 12 

so that the chamcteristic equation is 

1- 2_a-1 + ~a-2 - _.!._a- 3 = 0 
12 12 12 

1 1 
with characteristic roots at a 1 = 2, az = 2 and a3 

1 
3. Since the 

1 
characteristic roots are not distinct, z. e., 2 is a repeated root, then the 
homogeneous solution becomes 

which, on s·ubstitution of the initial conditions and solving the resulting 
system of linear equations, give A1 = 0.425, A2 = -0.025 and A 3 = 
-0.13:3. Hence, subject to some rounding errors the homogeneous solution 
becomes 

uh(k) = 0.425 (~) k- 0.025k (~) k- 0.133 (~) k 

Thus, 

uh(1) = 0.425 (~)- 0.025 (~)- 0.133 (~) 
= 0.16 

and 

(1) 2 (1) 2 (1)2 'Uh (2) = 0.425 2 - 0.5 2 - 0.133 3 
= 0.09. 
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It can also be checked by using any of the given in·itial conditions (say k = 2) 
that 

(1)-2 (1)-2 (1)-2 Uh( -2) = 0.425 2 - 0.025( -2) 2 -0.133 3 
= 0.70 

as expected 

8.3.1.3 The Particular Solution of the Difference Equation 

Out of a nu19ber of available methods for determining the particular 
solution, only two will be presented here. These are the method of un-
determined coefficients and the method of variation of parameters. Both 
require prior determination of the homogeneous solution uh(k). As for or-
dinary differential equations, the method of undetermined coefficients is 
restricted to equations with limited but fairly common forcing functions, 
while the method of variation of parameters is applicable to general forcing 
functions. On the other hand however, the method of undetermined coef-
ficients i,; computationally efficient as compared with that of variation of 
parameters. 

8.3.1.4 Method of Undetermined Coefficients 

The method of undetermined coefficients is useful when the terms in the 
forcing function r( k) have special forms as listed in the following table. 
Corresponding to each such term in r(k) there is a trial solution containing 
a number of unknown constant coefficients that are then determined by 
substitution into the difference equation. The trial solutions used in each 
case are also shown in the table, where the constants A and B represent 
the unknown coefficients to be determined. 

Terms in the Forcing Function Trial Solution 
ax~;; Ax/;; 

sin (xk) or cos (xk) Acos(xk) + B 
m m 
"L ajkj "LAJkJ 
j=O j=O 

m m 
Q;k "Lf3jkj a;k L Ajkj 

j=O j=O 
o:~;;sin (xk) or o:~;;cos (xk) a~;;[Acos(xk) + Bsin(xk)J 

The main requirement to be met by this method is that all terms that 
appear in the homogeneous solution should not be repeated in the trial so-
lution. If the trial solution uses terms that are already in the homogeneous 
solution, they must be multiplied by a positive integer power of k large 
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enough to push them out of the homogeneous solution range. In general, 
the method can be summarized in the following steps: 

• Determine the homogeneous solution of the difference equation. 

• Use the table to construct the trial solution, and if there exists com-
mon terms between the trial solution and the homogeneous solution, 
then these terms must be multiplied by some positive integer that is 
a power of k. 

Form the particular solution up(k) as a linear combination of all trial 
solutions and determine the unknown coefficients by treating up(k) 
as u(k) and substituting into the original difference equation. 

This method is illustrated in the following example: 

Example 8.5 Determine the particular solution of the following difference 
equation, 

u(k)- 3u(k -1) 4u(k 2) = 2k2 + 3 + 4k, 

with u( -1) = 0.5 and u( -2) = 1.0 

Solution 8.5 First, the homogeneous solution to the equation 

1L(k)- 3u(k- 1)- 4u(k- 2) = 0 

is determ.ined. The solution is given by 

uh(k) = 4.8(4)k + 0.7( -1)'-

FaT the particular soluLion, the forcing function 2k2 + 3 + 4' suggests a tTial 
solution of the form 

however, since the term 4k also appears in the homogeneous solution, it is 
then multiplied by k getting a new form of the particular solution as 

Using this equation in the original difference equation gives 

2k2 + 3 + 4k = A 1 k2 + A2k + A3k(4)k + A4 
-3 (A 1 (k -1)2 + A2(k -1) + A3(k- 1)(4)k~l + A4 ) 

- 4 (A1 (k- 2) 2 + A2(k- 2) + A;3(k- 2)( 4)"~ 2 + A4) , 
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which, on expansion and equating the coefficients, gives 

A4 = 1.6852, 

so that finally the particular solution becomes 
1 ? 22 4 ,, 

np(k) = - 3k~- 18 k+ Sk(4)" + 1.6852. 

The general solution to this difference eqnation is 

n(k) = 4.8(4)k + 0.7( -1)k- ~k2 - ~~ k + ~k(4)k + 1.6852. 

The Method of Variation of Parameters If the homogeneous so-
lution of the difference equation has the general form, 

n 

nh(k) = :Lcj Vj(k) 
j=O 

where Vj (k) includes the a root of the characteristic equation raised to 
the power k and any power of k for which ak must be multiplied and Cj 
are combinatorial coefficients, then the complete solution of the difference 
equation may be assumed to have a general solution of the form 

n 

n(k) = LAJ(k)Vj(k) 
j=O 

where Aj(k) are functions to be determined. There will ben such functions, 
and this requires n-initial conditions. But since the homogeneous solution 
must also be satisfied, this leaves only ( n- 1) condition;,;, which can be 
arbitrarily imposed. The choice of these conditions is made so as to simplify 
the computations as much as possible. One of the simplest algorithms for 
computing Ai(k) is 

k 

Aj(k) = AJ(O) + L6.AJ(m), 
fil,=l 

where 6.A7(m) are components of matrix 6.A, which satisfies 

where 

V= 

V6.A = R, 

r
Vl(k-1) V2(k-l) 
V1(k-2) V2(k-2) 

V1(k:- n) V2(k;- n) .· .. : 

V,(k-1)1 Vn(k- 2) 

(k- n) 
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and 

r(k) 
ao 
0 

R= 0 

0 

Since 

.6..A= v-1R 

it can be seen that 

.6..A·- V· r(k) 
1- Jn ' ao 

where Vjn is the element in row j and column n of the inverse of matrix V. 
Because of the need to invert matrix V this method might seem to be 

very complex. However, in most cases, complete matrix inversion of V 
is not necessary since there is only one entry in matrix R, i.e., the first 
entry. This makes it possible to make use of the determinant repeatedly 
in the Gauss-Jordan complete procedure. This method is illustrated in the 
following example. 

Example 8.6 Solve for the particular solution of the following second-
order difference equation 

y(k)- 5y(k- 1) + 6y(k- 2) = k2 . 

Solution 8.6 From the previous examples, it is known that the character-
istic roots of this equation are 2 and 3. The general solution of this equation 
is 

Thus, 
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so that 

Using this result and forming the augmented Gaussian matrix leads to 

which in row echelon form is given by 

This leads to 

and 

-2k-2k2 

~A2 (k) = 3k-22k-1 _ 3k-12k-2 

= 9k23-k 

Proceeding with the computation of the Aj(k) terms produces, 

where 

Similarly, 

k-1 

A1(k)=A1(0)+ L(-4m2Tm) 
m=l 

9 
C1 = A1(0)- 2-4-- + .. · · · · 

2 

so that the complete solution becomes 

597 



598 Design and Analysis of Control Systems 

8.3.2 The Difference Operator (D.) and Shift Operator ( q) 

The name "difference equation" derives from the fact that it can be 
expressed in terms of the difference between consecutive instances. Thus, 
for the difference equation with a sequence of terms { u(k - i)}f=O> the 
consecutive terms can be related by the difference 

u(k- i)- u(k- i- 1) = D.bu(k- i), 

which for i = 0 becomes 

u(k)- u(k- 1) = D.bu(k). (8.35) 

The term D.bu(k:) is known as the backward difference as it relates u(k) to 
term which is back in time by one sampling interval. The two terms can 
also be related by 

u(k- i)- u(k- i- 1) = D.tu(k- i -1), 

which again for i = 0 reduces to 

u(k) u(k- 1) = D.tu(k- 1). (8.36) 

In this case, the term D. JU( k -1) is known as the forward difference because 
it relates the term 11(k- 1) with the term u(k), which is ahead in time 
(forward) by one sampling interval. The symbol D. represents the difference 
operation and is known as the difference operator. This, as will be shown, 
is closely related to the continuous-time differential operator ft. 

The expressions in Equations 8.35 and 8.36 give the first differences be-
tween consecutive terms. To relate more than two terms, higher-order 
differences are used. Basically, the higher-order differences are differences 
of lovver order (by one order). For example, the second-order backward 
difference is defined as 

Since the definition of the first-order difference gives 

D.bu(k) = u(k)- u(k- 1) 

and 

D.bu(k- 1) = u(k- 1)- u(k- 2). 

It then follows that 

D.~u(k) = [u(k)- u(k- 1)]- [u(k- 1)- u(k- 2)] 
= u(k)- 2u(k- 1) + u(k- 2). 
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Using the same procedure, it can be shown that the third-order difference 
is given by 

Ll~u(k) = u(k)- 3u(k- 1) + 3u(k- 3)- u(k- 3). 

From examining the coefficients of these terms, it is clear that they are the 
binomial coefficients given by 

n! 
(n- i)!i! · 

This will be made more clear after the introduction of the shift in the 
time operator later in this section. In general, it can be stated that the 
n-th-order backward difference equation is given by 

= ~ n!u(k- i) ( _ 1)i. 
~ (n- i)!i! 
•=0 

Similarly, the forward difference can be shown to be 

An (k _ ) = ~ n!u(k- i) (- )n-i 
u 1u n ~ ( _.) 1.1 1 . 

i=O n 2 .2. 

(8.37) 

(8.38) 

In most of the digital control applications, the forward difference is more 
attractive than the backward difference. Hence, unless otherwise stated, it 
will be assumed that forward differences are used. 

Counterpart to the difference operator is the shift in time operator q. The 
forward shift in time corresponding to forward differences can be expressed 
in terms of the q-operator as 

qu(k) = u(k + 1). (8.39) 

The corresponding backward shift in time is represented by the inverse time 
shift q- 1 as 

Notice that by this definition 

q- 1u(k + 1) = u(k + 1- 1) 

= u(k). 



600 Design and Analysis of Control Systems 

Also from Equation 8.39, it follows that 

so that 

This proves that the backward shift in time is just the inverse of the forward 
shift in time. The general shift in time operation is expressed as 

or 

q-nu(k) = u(k- n). 

Unlike the difference operator, which mainly indicates the relationship 
between the terms in a difference equation (except for numerical interpo-
lation of the continuous-time signal that produced the difference equation, 
which will be covered at later stages of this chapter), the shift in time op-
eration goes further. to reduce the difference equation to a simple algebraic 
expression that can be handled by using normal algebraic rules. Consider, 
for example, the difference equation 

n m 

ao = 1. (8.40) 
i=O j=O 

Applying the shift in time operation to Equation 8.40 gives 

n m 

i=O j=O 

so that 

By performing long division, the rational term can be reduced to 
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which gives 

00 

a=O 

= cor(k) + c1q- 1r(k) + c2q- 2r(k) + · · · 
= cor(k) + c1r(k- 1) + c2r(k- 2) + · · · 
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(8.41) 

Hence, by knowing some of the terms of r( k) (of course finite terms), it is 
obvious that one can approximate the solution of the difference equation 
using this expression. 

8.3.2.1 The .6.-0perator and the q-Operator 

There are many instances when an equation in the q-operator form is 
useful, while in other cases an equation in the .6.-opcrator is more useful. 
As such, one should be able to tram::>form from one form to another by using 
the relationship between the two operators. To establish the relationship 
between the 6roperator and the q-operator, recall the definitions 

6tu(k- 1) = u(k)- u(k- 1) 

and 

qu(k- 1) = u(k). 

l3y combining these two definitions, it follows that 

so that 

6tu(k- 1) = qu(k- 1)- u(k- 1) 
=[q-l]u(k-1) 

Similarly, the backward difference operator t:,.b can be related to the shift 
in time operator by 

For higher-order differences, these relationships develop respectively to 

6.ju(k- n) = (q- l)n u(k- n) 

and 

These relationships can explain why the coefficients of the terms in the 
higher-order difference operation are binomial coefficients. 
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8.3.3 Discrete Approximation of Continuous Processes 

Most of the processes in real life are continuous in nature. The need to 
have these processes controlled using a digital computer gives rise to a need 
for their discretization or digitization. The sampling process previously 
discussed is indeed the sole process by which a continuous-time signal can 
be discretized. However, the sampling process as it was presented does 
not suffice to describe the discrete-time form (difference cq uations) of the 
continuous-time differential equations which describe the dynamics of most 
processes. This section extends the ideas presented under the sampling 
process section to generate difference equations from the continuous-time 
differential equations giving the discrete form of describing the dynamics 
of the system. There are three methods of discretization of continuous-
time process, however the methods presented here are based only on the 
discrete-time approximation of the differential and integral equations. 

8.3.3.1 Differential Equations and the 8-Transform 

Euler's Forward Rule: Euler's methods provide the simplest ways of 
approximation of a continuous-time differential equation. There are basi-
cally three forms of Euler's approximation; namely the forward rectangular 
(difference) rule, backward rectangular (difference) rule, and the central 
(difference) rule. All these approximations are based on the fact that the 
differential 

dx(t) I = lim ox(t) I 
dt t=k ot-.o ot t=k 

is just the gradient of the function :t:(t) at t = k. The forward approximation 
Lakes the gradient of the function x(t) at t = k as 

dx(t) I ;:::j x(k + 15t)- x(k) 
dt t=k ot 

therefore, if the sampling interval l5t is specified as T, then the forward 
rectangular rule becomes 

d:r(t) I ;:::j x(k + T)- x(k) 
dt t=k T 

(8.42) 

Now, noting that by the forward difference operator 

x(k + T)- x(k) = t::.1x(k) 

then the approximate differential in Equation (8A2) can be written as 
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which gives the relationship between the differential operator :t and the 

forward difference operator b.j(t) as 

dj(t) C:o< b.f(t) 
dt - T 

and since D.f(t) = q- 1, then 

df ( t) ~ q - 1 ( 0) 
dt T 

which is known as the 6-transform of a given function f(t), symbolized as 
b, where 

q-1 
b=--

T 

Thus, knowing the time derivative of the function x(t), the approximate 
discrete-time approximation using Euler's forward rectangular rule becomes 

dx(t) I 9" q- 1 x(k) 
dt t=k T 

= bx(k) 

Higher-order clifl:'erential equations can also be defined where 

dnx~t) I 9" (q- 1)" x(k) 
dt t=k T 

= 5"x(k). 

Euler's Backward Rule: Alternative to the forward rectangular rule 
is the backward rectangular rule defined as 

d.x(t) I e:o< x(k)- x(k- T) 
dt t=k T 

Using the same approach as for the forward rectangular rule, this can be 
reduced by the use of the backward difference 

x(k)- x(k- T) = b.bx(k) 

to give 

dx(t) I . 9" b.b x(k) 
dt t=k T 

or 
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Hence, the discrete-time approximation of the differential equation by back-
ward rectangular rule becomes 

dx(t) I 9:! 1- q-1 x(k) 
dt t=k T 

=q-lx(k). 
qT 

In terms of the &-transform, this becomes 

dx(t) I 9:! ~x(k) 
dt t=k q 

= &q- 1x(k) 

Higher-order differential equations can be likewise be handled as 

or simply 

(8.43) 

The Central (Difference) Rule: Finally, between the forward and 
backward rectangular rules is the central rule that spans half of the back-
ward and half of the forward rules. It is defined as 

dx(t) I C-' x(k + 0.5T)- x(k- 0.5T) 

dt t=k T 
(8.44) 

Due to the difficulty of sampling half intervals, it is sometimes expressed as 

dx(t) I '="' x(k + t)- :r(k- T) 
dt t=k 2T 

(8.45) 

Since the resulting range of gradient approximation is very wide, this method 
becomes very inaccurate, and for most applications, is seldom used. 

8.3.3.2 Approximation of Integral Functions 

Sometimes, the dynamics of the plant includes both the differential and 
the integral terms, for example the PID controller. The previous discussion 
focused on the discretization of the differential equations. In this section, 
the discretization of the integral functions is considered. The discrete-time 
approximation of the integral f/:_rr(t)dt comes from the fact that the 
integral is just the area enclosed by the r(t) curve and the t-axis. Notice 
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that the limits of an integral in a given sampling instant are normally 
chosen so that the upper limit is the current sampling instant (k). Thus, the 
discrete-time approximation is that of approximating this area. There could 
be many methods for this purpose, but the three most popular methods 
employed in control applications are: Euler's backward rectangular rule, 
Euler's forward rectangular rule and the trapezoidal rule. It will be seen 
that both the Euler's backward and forward rules are derived from the 
corresponding rules for approximation of differential equations. 

Euler's Backward Rectangular Rule: Euler's backward rectangular 
rule for discrete approximation of integral functions between two sampling 
instants gives an approximate area of a rectangle whose base is the sampling 
interval and whose height is the value of the function at the final limit. 
Basically, this method assumes that the function is constant at its value 
at the end of the integration interval. Hence, the approximate integral 
becomes 

{k r(t)dt = r(k)T 
lk-T 

The backward rule gets its name from the fact that the value of the function 
u(k) is used to determine the area backward from it. 

Euler's Forward Rectangular Rule: The forward rule is just the 
opposite of the backward rule in that the discrete approximation of integral 
functions between two sampling instants gives an approximate area of a 
rectangle whose base is the sampling interval and whose height is the value 
of the function at the lower limit. It assumes that the function remains 
constant at its value at the lower end of the integration interval. By this 
rule, the approximate integral becomes 

{k r(t)dt = r(k- T)T. 
lk-T 

Simpson's Trapezoidal Rule: The main disadvantage of the Euler's 
methods described above is that either they overestimate or underestimate 
the integral. Simpson's trapezoidal approximation overcomes these disad-
vantages by taking the average of the limiting values of the integrand. As 
such, it treats the area between the two integration limits as a trapezium 
of width T with sides r(k- T) and r(k) that give the average height as 
~ [ r(k- T) + r(k)]. As such, the approximate integral becomes 

l k 1 
r(t)dt = 2 [ r(k- T) + r(k)] T 

k-T 
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8.3.4 The Z-Transforms 

8.3.4.1 Definition of the Z-Transform 

The shift in time ( q-operator) and the difference ( 8-operator) are trans-
formations that enable the system to be analyzed in time domain using 
algebraic rules. Most often, in control engineering there is much interest 
for the analysis to be carried out in both the time and the frequency do-
mains. As such, similar to the Laplace transform for the case of continuous-
time systems, which transforms the system from time domain to frequency 
domain, the Z-transform is the transformation method that converts the 
discrete-time system from the time domain to the frequency domain. That 
is why the Z-transform is regarded as the discrete-time equivalent of the 
Laplace transform. In this section, the basics of the Z-transform and their 
properties are discussed. The application of the Z-transforms in the anal-
ysis of the discrete-time systems will be apparent from the next sections. 

Appendix A contains Z-transforms and their properties. Given discrete-
time signal values {r(k)}b,_00 the Z-transform is defined as follows: 

R(z) ~ JZ{r(k)} 

= L r(k)z-k, (8.46) 
k=-oo 

where z is a complex variable with bounded magnitude such that for some 
values 7'0 and Ra 

00 

so that the series 2:: r(k)z-" converges. 
k=-oo 

The definition is general and holds for all values of k, but since the 
sequence {r(k)} is normally defined for positive integers k, the one sided 
Z-transform is commonly used. This is defined as 

= 
R(z) Lr(k)z-k, (8.47) 

k=O 

where the z-variable is bounded such that for some value r 0 

To < lzl. 
8.3.4.2 The Z-Transform and the Laplace Transform 

To establish the relationship between the Z-transform and the Laplace 
transform, consider a continuous-time signal T(t) sampled at even intervals 
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T of time giving discrete-time signals {T(k)}~_ 00 • It was shown that the 
Laplace transform of such discrete-time signals is 

00 

R*(s) = L T(k)e-skT. 
k=-oo 

From the definition of the Z-tra.nsform, the Z-tra.nsform of this signal is 
given by 

00 

R(z) = 
k=-oc 

Since both the Laplace transform and the Z-transform map the same sam-
pled signal from the time space to the complex frequency space, they are 
equal, i.e., 

F*(s) = F(z) 

or 

(8.1±8) 
k=-oo k=-= 

From this equality, it follows that 

or simply 

Using this relationship, it is possible to analyze the system in continuous-
time domain using Laplace transforms and convert the results into the 
discrete-time domain and vice versa. The relationship is widely used in 
control design using the pole-zero matching technique, which will be dis-
cussed in later sections. The most obvious conclusion that can be drawn 
from this relationship is that if the system has a pole or zero at s = -a in 
the s-plane, then in the z-plane this pole or zero will be at e-aT. Similarly, 
a zero at b in the z-plane implies a zero at -tIn b in the s-plane. The reh-
tionship between the two transforms described above can further be studied 
from the table of the Laplace and Z-transforms for variou~ continuous-time 
signals using a sampling interval of T. 
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8.3.4.3 Properties of the Z-Transforms 

The Z-transforms along with their counterpart Laplace transforms for 
different discrete-time signal are shown in Appendix A. This table is useful 
in most digital control systems analysis and design applications. The reader 
is encouraged to become familiar with it. In this section, the fundamental 
properties of the Z-transform are discussed. These help to simplify most 
of the transformation problems as dictated by the property itself. 

Linearity: The Z-transform is a linear operator. This means that if 
two discrete-time signals f(k) and g(k) are linear such that the principle of 
superposition holds, i.e., if for some scalars a and f3 

r(k) = af(k) + f3g(k) 

implies that 

r(k + n) = af(k + n) + f3g(k + n) 

then the Z-transform becomes 

Z{r(k)} = Z{af(k) + f3g(k)} 
= aZ{f(k)} + f3Z{g(k)} 

or simply 

Z{af(k) + f3g(k)} = aF(z) + f3G(z) (8.49) 

where F(z) = Z{f(k)} and G(z) = Z{g(k)} 
The Convolution Theorem: It has been shown before that in continuous-

time systems for which the principle of superposition hold, the signal u(t) 
is said to be a convolution of two signals r(t) and h(t) if 

u(t) =I: r(T)h(t- T)dT 

and the time scale is valid for both positive and negative values. It was also 
shown that since in most applications time is counted only on the positive 
side to some time limit t, the convolution then becomes 

In either of these cases, the convolution is expressed symbolically as 

u(t) = r(t) * h(t). 

The discrete-time equivalent of this convolution is the convolution sum-
mation. If the discrete-time signals are available for any instant k in the 
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range ( -oo, oo), then the discrete-time signal u( k) is said to be convolution 
of two discrete-time signals r(k) and h(k) if 

00 

u(k) = L r(j)h(k- j). 
j=-00 

Since the sampled signal is normally only available at positive finite k 
instants of time, the convolution summation becomes 

k 

u(k) = L:r(j)h(k- j). 
j=O 

This is also expressed as 

u(k) = r(k) * h(k). 

Now, if the Z-transform is taken on both sides of this convolution sum-
mation the result is 

U(z) = Z{u(k)} 

~ '%:; [ t,r(j)h( k - j)] z-•. (8.50) 

Rearranging the terms in this expression (Equation 8.50) gives 

00 00 

U(z) = Lr(j)Lh(k- j)z-k. (8.51) 
j=O k=O 

Letting (k- j) = m and using this substitution in Equation 8.51 leads to 

00 00 

U(z) = l:r(j) L h(m)z-m-j 
j=O m=-j 

(8.52) 

Considering the one sided Z-transforms, where it is assumed that signals 
at negative instants are not defined, then 

-1 

L h(m)z-m = 0. 
m=-j 
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which reduces Equation 8.52 to 

00 00 

U(z) = Lr(j)z-jLh(m)z-m. (8.53) 
j=O m=O 

From the definition of the Z-transform it follows that 

00 

Lr(j)z-j = Z{r(k)} = R(z) 
j=O 

00 

Lh(m)z-m = Z{h(k)} = H(z). (8.54) 
m=O 

Thus, the Z-transform of the convolution summation becomes 

U(z) = R(z)H(z), 

which means that the Z-transform of a discrete-time signal that is a con-
volution of two discrete-time signal is just a product of the Z-transform of 
the individual signals. 

Differentiation with Respect to z : This property is very useful when 
dealing with reduced algebraic equations in z. Consider the definition of the 
Z-transform 

00 

U(z) = Lu(k)z-k 
k=O 

Taking derivatives with respect to z leads to 

or simply 

dU(z) =I) -k)u(k)z-k-1 
dz k=O 

00 

= -z- 1 Lku(k)z-k 
k=O 

dU(z) _ ~k (k) -k 
-Z~-6 U Z . 

k=O 
(8.55) 

As can be seen, the right-hand side of Equation 8.55 is just the Z-transform 
of the function ku(k), therefore, putting it together gives 

Z{ku(k)} = -zdU(z) 
dz 
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This differentiation holds for both one-sided and two-sided Z-transform 
and can be repeated successively to give 

Z{knu(k)} = [ -z ddz r U(z). 

where 

[_z!:_]n U(z) = -z!:_ (-z!:_ (-z!:_ ...... (-z!:_). ··)) U(z). 
dz dz dz dz dz 

(8.56) 

The differentiation is repeated n-times. 
The Time Shifting Property: The time shifting property of the Z-

transform enables us to determine the Z-transform of a discrete-time sig-
nal at any other instant of time, provided the transform at one instant is 
known. There are two types of time shifting: the backward shifting in time 
and the forward shifting in time. It will further be noted that both the 
backward and forward time shifting behave differently between the one-
sided Z-tran::;form and the two-sided Z-transform. First, this property is 
discussed in the more general two-sided Z-transforms and then concludes 
with the special case one-sided Z-transform. However, first a reminder on 
the concept of time shifting is given. 

A sequence {r(k)}k=p for some number pis said to be time shifted if 

it can be expressed as another sequence {r(k)}~:;:+qfor another number q 
where q of=- p. If q > p, the sequence is said to be forward shifted in time 
while it becomes backward shifted in time if q < p. In other words, one can 
put it this way, a pulse r(k) is forward shifted in time by q if it is defined as 
r(k + q) and is said to backward shifted by the same amount_ if it becomes 
r(k- q). 

Consider a discrete-time signal sequence {r(k)}k=-oo with a two-sided 
Z-transform depoted by R(z). From its definition 

00 

R(z) = :2::: r(k)z-k. 
k=-= 

Now if this sequence is time shifted by some finite interval n to become 
{r(k + n)}k'=-oo then its Z-transform becomes 

00 

Z{r(k + n)} = L r(k + n)z-k 
k=-00 
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For the right-hand side, let k + n = p such that 

oo+n 
Z{r(k + n)} = L r(p)z-p+n, 

p=-oo+n 
where oo + n = oo and -oo + n = -oo. The above expression can be 

simplified as 
00 

Z{r(k + n)} = zn L r(p)z-P 
p=-oo 

but the summation in the right-hand side is just the Z-transform R(z) of 
the sequence {r(k)}~_00 , therefore, it can be concluded that 

Z{r(k + n)} = zn R(z), (8.57) 

which is the time shifting property of the two-sided Z-transforms. Notice 
that when n > 0 it becomes the forward shift in time while n < 0 gives the 
backward shift in time. 

When the one-sided Z-transform is used, this property takes a different 
shape for the forward shifting in time. In fact it requires all intermediate 
conditions within the shifted interval to be known. Consider again the 
discrete-time signal sequence {r(k)}~0 with the one-sided Z-transform 
R(z) which is defined as 

00 

R(z) = Lr(k)z-k. 
k=O 

If this sequence is shifted in time by some finite interval n in time to 
become {r(k + n)}~0 then its Z-transform becomes 

00 

Z{r(k + n)} = Lr(k + n)z-k, 
k=O 

which again by replacing k + n by pin the right-hand term gives 
00 

Z{r(k + n)} = Lr(p)z-p+n 
p=n 

00 

= ZnLr(p)z-P. (8.58) 
p=n 

But 
oo oo n-1 

Lr(p)z-k = Lr(p)z-P- Lr(p)z-P 
p=n p=O p=O 
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where 

00 

l:r(p)z-P = Z{r(p)} = R(z). 
p=O 

Thus, these results can be combined together to give 

n-l 

Z{r(k + n)} = z"R(z)- znLr(p)z-P. (8.59) 
p=O 

This is the expression for the forward shift in time of the one-sided Z-
transform. The terms in the summation are the intermediate values which 
must be known for the shifting property to work. Similarly, the backward 
shift in time can be done in the same way where 

00 

Z{r(k- n)} = Lr(k- n)z-k, 
k=O 

which, on replacing (k- n) by p gives 

00 

Z{r(k- n)} = L r(p)z-p-n 
p=-n 

00 

p=-n 

= z-n [. t r(p)z-P + tr(p)z-P]. 
p--n p-0 

(8.60) 

Since 

00 

l:r(p)z-P = R(z) 
p=IJ 

then, the backward shift in time property becomes 

Z{r(k- n)} = z-n [ R(z) + p~nr(p)z-P ]· (8.61) 

The summation term gives the sum of the terms in the negative time interval 
multiplied by the power of negative z corresponding to their position from 
the initial time. 

The Initial Value Theorem: As noted before, it is the one sided Z-
transform that is used in many occasions. Given the one-sided Z-transform 
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R(z), it may become necessary to know the initial value r(O) of the se-
quences that generated this transform R(z). One possibility is to find the 
inverse of R(z) (discussed in the next section) and then evaluate f(O) di-
rectly. However, this method is not a very efficient one if the interest is just 
to find r(O) only. The initial value theorem is a more elegant method that 
gives the initial value r(O) of the sequence directly from its Z-transform. 

Recall that the one-sided Z-transform R(z) is defined as 

00 

R(z) = :Lr(k)z-ic 
k=O 

= r(O) + r(l)z- 1 + r(2)z- 2 + r(3)z-3 + · · · , (8.62) 

which converges uniformly for all jzj > r0 . Therefore, as z ----+ oo, the terms 
multiplied by powers of z- 1 disappear. This observation is what is stated 
in the initial value theorem, which is summarized as 

lim R(z) = r(O). 
Z---+00 

Note that this theorem doesn't apply for the two-sided Z-transforms. 
The Final Value Theorem: The final value theorem may be viewed 

as the converse of the initial value theorem. It also applies only with the 
one-sided Z-transform. This theorem enables us to determine the behavior 
of r(k) as k ----+ oo from its Z-transform. The final value theorem can be 
derived from the time shift theorem as follows: 

Since for the one-sided Z-transforrns 

Z{r(k -1)} = z- 1 R(z) 

then 

Z{r(k)- r(k- 1)} = [1- z- 1]R(z). 

But by definition 
00 

Z{r(k)- r(k- 1)} = L[r(k)- r(k- 1)]z-k 
k=O 

N 

= lim '2:lr(k)- r(k- l)]z-k. 
N->oo 

k=O 

So that from Equations 8.63 and 8.64. 

N 

[1- z- 1]R(z) = lim ""[r(k)- r(k- l)]z-k 
N--).oo L__; 

k=O 

(8.63) 

(8.M) 

= lim { (r(O) + T(l)z- 1 + T(2)z- 2 + · .. + r(N)z-N ... ) 
N-+oo 

- (r( -1) + r(O)z- 1 + r(l)z-2 + · · · + T(N- l)z-N + · · ·). 



Digital Control Systems 615 

Further simplification can be made of this expression by multiplying by z 
to obtain 

[z- 1]R(z) = lim { (r(O)z + r(l) + r(2)z- 1 + · .. + r(N)z-N+l ... ) 
N->CXJ 

- (r( -1 )z + r(O) + r(l )z- 1 + · · · + r( N- 1 )z-N +l + ... ) 
(8.65) 

Now if z ~ 1, this will reduce to 

lim [z- l]R(z) = lim {(r(O) + r(l) + r(2) + · · · + r(N) · · ·) 
Z---i-1 N-+oo 

- (r( -1) + r(O) + r(1) + · · · + r(N- 1) + · · ·) 
= lim r(N)- r( -1). (8.66) 

N->CXJ 

Since for the one sided Z-transfonns r(-1) = 0, it follows that the final 
value theorem emerges as 

lim[z -1]R(z) = lim r(N). 
z---+1 N_,.oo 

(8.67) 

Frequency Scaling (Multiplication by aA'): There are some situa-
tions when the samples in the sequence of a discrete-time signal are ampli-
fied by the power of the time instant. The Z-transform of such signals are 
obtained through the frequency scaling property of the Z-transform. 

To determine the Z-transform of the sequence {akr(k)}~0 , which is 
{r(k)} amplified by a factor ak, one can start with the basic definition 

CX) 

Z { a"'r(k)} = Lakr(k)z-k. 
k=O 

Rearrangement of the terms gives 

Z {akr(k)} = :Lr(k)(a- 1 z)-k. 
k=O 

This is essentially the Z-tra.nsform, in which the complex variable z is scaled 
down by a factor a- 1 , i.e., 

This property can also be used to show that the z-variable in the Z-
transform of the sequence {a-·kT(k)}k=O is scaled up by a factor a. This 
implies that 

Z { a-kT(k)} = R(az). 
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The Inverse Z-Transforms: For the Z-transform to be useful in 
discrete-time systems analysis, there must be a way of obtaining the discrete-
time signals that resulted in the Z-transform. This is achieved by using 
the inverse of the Z-transform. 

r(k) = z- 1{R(z)} 

The most direct method of finding the sequence r(k) given its Z-transform 
R(z) is by using the inversion integral formula 

r(k) = ~ J R(z)zk- 1dz 
2rrJ Jr 

(8.68) 

where .'fi'ris the integration in the complex z-planc along the closed curve r 
in the counterclockwise direction. The curve is taken to be the unit circle 
centered at the origin of the z-plane so that R(z) is convergent. 

The inversion integral formula is derived from the definition of the Z-
transform by using Cauchy integral theorem, which, in its simplest form, is 
given by 

J zk-n-ldz = { 2rrj fork= n 
Jr 0 for k =f. n. (8.69) 

If both sides of the definition of the Z-transform arc multiplied by zk-l and 
the closed integral taken over r then 

i R(z)Z 11
-

1dz = .i kf;oor(k)z-k+n-ldz 

= · · · + i r(-l)z-l+n-ldz + r(O)z0+n-ldz 

+ · · · + i r(l)zl+n-ldz + .. · . (8.70) 

Since, in each of the terms on the right-hand side of this expression, the 
terms r(i) are not functions of z,they can be taken out of the integral sign, 
and by using Cauchy's integral formula. Hence, all terms in this side will 
vanish to zero except when k = n and this leaves the expression simplified 
to 

R(z)zk-1dz = r(k).2rrj, (8.71) 

from which 

(8.72) 
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Now the inverse Z-transform can be determined from this formula by 
using the residue theorem (Cauchy residual calculus), however for many 
cases in control engineering, this is not necessary. Thus, other methods 
that are more direct to applications in control engineering are discussed, 
where the one-sided Z-transform R(z) is used and assumed to be a rational 
function of z with the degree of the numerator being less than or equal to 
that of the denominator. 

Inversion by Power Series Expansion (Direct Division) If R(z) 
is a rational function in z of the form 

R(z) = bo + b1z + b2z2 + · · · + bmzm 
ao + a1z + a2z2 + · · · + anzn (8.73) 

with m :::; n, R(z) can be expressed as an infinite power series of z- 1 by 
long division as 

or simply 

00 

R(z) = 2::>kz-k. (8.74) 
k=O 

Obviously, by comparing this result and the definition of the Z-transform, 
it follows that the value of r(k) in the sequence that generated R(z) will be 
given by the coefficients of z-k in the infinite series. With this approach, 
it is possible to get the values of the discrete-time signals at any instant 
k. However, it is not easy to identify the general term from the first few 
sample values of the sequence. 

Example 8. 7 Given 
z 

R(z) = z- 0.2 

determine T(O), T(1), r(2) and T(3) 

Solution 8. 7 Perform long division 

lzl > 0.2. 

1 +0.2z- 1 0.04z-2 +0.008z-3 

z- 0.2) z 
z -0.2 

0.2 
0.2 -0.04z- 1 

0.04z- 1 -0.008z-2 

o.008z- 2 -0.0016z-3 
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Prom this result, it becomes evident that 

R(z) = 1 + 0.2z- 1 - 0.04z-2 + o.oosz-3 + ........ . 
so that 

r-(k) = (0.2t u(n). 

From this equation it can be deduced that for unit u(n) 

r(O) = 1 

r(1) = 0.2 

r(2) = 0.04 

r(3) = 0.008. 

Inversion by Partial Fraction Expansion: This is the most popular 
and direct method of finding the inverse of a Z-transform, which gives not 
only the values of r(k) but also the general sequence that produced these-
quence. Like its counterpart Laplace transforms, it stems from the simple 
fact that every rational function can be expressed as a sum of partial frac-
tions and that almost all fundamental Z-transforms that appear as partial 
fractions of the given R(z) are standard and their inverse Z-transforms can 
be found from many standard mathematical handbooks and tables. These 
tables show the fundamental Z-transforms and hence their inverses. 

The idea behind this method is to obtain a partial fraction expansion of 
R(z) over its poles just as it was shown in the case of Laplace transforms 
so that if 

N(z) 
R(z) = D(z)' 

with deg[N(z)] :::; deg[D(z)], under partial fraction expansion it becomes 

R(z) = R1(z) + R2(z) + R3(z) + · · · 
where Ri(z) are the partial fractions. From the standard table, with use 
of the properties of the Z-transform (Appendix A), the expression for r(k) 
can be obtained as a sum of the inverse Z-transforms of the elementary 
transforms of the partial fractions. 

Methods of breaking R(z) into its partial fractions are the same as those 
discussed under the Laplace transforms, as such they are not repeated here. 

Example 8.8 Use the method of partial fractions to calculate the inverse 
of 

4z Y(z) = - 2-z -1 

Determine y(O), y(1), y(2)and y(5). 
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Solution 8.8 The given function can be presented -in partial fractions as 

2 2 
Y(z) = -- + --, 

z-1 z+l 

which, by using tables gives 

or simply 

This means 

y(k) = 2(1)k-l + 2( -1)k--l' 

y(k) = 2 [1- (-1)k]. 

y(O) = 0 

y(1) = 4 

y(2) = 0 

y(5) = 4, 

Using the z-Transform to Solve Difference Equations: At this 
point of interest the usefulness of the Z-transforms in discrete-time analy-
sis can be seen. Recall that the dynamics of the discrete-time system are 
described by using difference equations, and that the responses of such sys-
tems are obtained by the solution of the difference equation that describes 
its dynamics. Previously, methods for solving difference equations using 
iterative methods and other time-based methods were discussed. The main 
disadvantage with most of these approaches is the number of computations 
required to reach the solution. In this section, a method of solving such 
equations by using Z-transforms is discussed. It is believed to be simpler 
computationally. Basically, like using the Laplace transforms on differen-
tial equations, the method involves two main steps; one that transforms 
the given difference equation into the complex z-planc, where the analysis 
is done using normal algebraic methods, and inverse transformation back 
to the time domain, which gives the required solution. 

Consider the difference equation 

n m 

L)iu(k- i) = "f)ir(k- j) a0 = 1, 
i=O j=O 

where it is desired to determine the response u( k) at any instant k uc>ing 
Z- transforms. 

The first thing will be to get the Z-transform of this equation and this 
is done by using the shift in time property of the Z-transform. 
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n n-z. 

,I)iz-iU(z) = ,I)jz-j R(z) m:::;; n. 
i=O j=O 

Isolation of the Z-transform of the required solution gives 

m 
I; bjz-j R(z) 

U ( Z) = ::_j =_0-=n---
I;aiz-i 
i=O 

m:::;; n, (8.75) 

which is a rational function in z. With this Z-transform of the required 
solution, it is possible to get u( k) by taking its inverse Z-transform using 
any of the methods described in the previous section. 

Example 8.9 Solve the difference equation 

u(k)- 3u(k- 1)- 4u(k- 2) = 2k2 + 3 + 4k 

·using initial conditions u ( -1) = 0.5, u ( -2) = 1.0 

Solution 8.9 Since the initial conditions are defined that are valid fork < 
0, for this problem, one can still1tse the one-sided Z-tmnsform as discussed 
previously. This will give 

U(z)- 3z-1 [U (z) + u( -1)z]- 4z-2 [U(z) + u( -1)z + u ( -2) z2] 

= 2z(z + 1) + 3_z_ + _z_, 
(z-1)3 z-1 z-4 

which simplifies to 

z(z + 1) z z 
(1- 3z-1 + 4z-2 )U(z) = 2 (z _ 1)3 + 3 z _ 1 + z _ 4 + 1.5 + 2z-1 + 4 

-111z4 + 185z3 - 125z2 + 19z5 - 8z + 16 

2 (z- 1)3 (z- 4) z 

Thus, the Z-tmnsform of the output U(z) becomes 

( ) ( -lllz4 + 185z3 - 125z2 + 19z5 - 8z + 16)z u z = 3 ' 2 (z- 1) (z- 4) (z2 - 3z + 4) 

which can be broken into partial fractions as 

U 19 2 8 27 8 18z (z) = - + + + + -- + ~--.,.---
2 (z~I) 3 (z-1) 2 2(z-l) z-4 z2 -3z+4' 

Thus, the inverse Z-tmnsform, u(k), can be obtained from the tables. 
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8.3.5 Dynamic System Response and Stability Analysis 

In the previous section, different mathematical tools for analyzing discrete-
time systems-were discussed. In this section, methods of analysis of discrete-
time (digital) control systems using these tools are discussed. The foremost 
of all to be considered in the analysis of any control system is the definition 
of the transfer function. In the following section, the description of the 
transfer function using both the Z-transform and the time shift operator 
q is given. Once this is done, the system analysis method for the time re-
sponse as well as stability will be given. Also the system description using 
state variables will be presented as well as the analysis using state variables. 

8.3.5.1 The Pulse Transfer Function 

The system transfer function is an expression that shows the relation-
ship between the system input and its output. Just like the transfer func:-
tion in the continuous-time systems where it is given by the ratio of the 
Laplace transform of the output to that of the input, the transfer function 
for discrete-time systems is the ratio of the Z-transform of the output to 
that of the input. However, it is also possible to describe the transfer func-
tion in terms of the time delay operator q, as is shown shortly. Consider a 
discrete-time system described by a linear difference equation 

n m 

I>iu(k- i) = "f)JT(k- j). 
i=O j=O 

Previously, it has been shown that the time shift operator q has the 
property 

qn f(k) = f(k + n) 

or 

q-n f(k) = f(k- n). 

This property can be applied on this difference equation to give 

n Tn 

i=O j=O 

or simply 

n m 

(8.76) 
i=O j=O 
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The pulse transfer function H ( q) can be defined using the q variable as the 
ratio of the output pulse u(k) to the input pulse r(k:), both taken at the 
same instant k, thus 

(8.77) 

which can be expanded as 

H( ) = bo + b1q- 1 + b2q-2 + b3q-3 + · · · + bmq-m 
q aa + a1q-l + a2q-2 + a3q-3 + · · · + anq-n 

(8. 78) 

where a0 is normally normalized to 1 as explained before. Sometimes, 
instead of expressing the pulse transfer function as a rational functiou in 
ascending negative powers of q, it can be expressed in terms of ascending 
positive powers of q by dividing both the numerator and the denominator 
by the highest negative power q of the denominator. In that case, the above 
transfer function becomes 

qn-'n(b qm + b qm-l + ... + b q2 + b q + b ) H(q) = o 1 m-2 m-1 m . 

qn + a1qn-l + · · · + an-2q2 + an-Jq +an 
(8.79) 

Example 8.10 The input-output relat·ionship of a cer-tain discrete-time 
system is given by the difference equation 

u(k)- 4u(k- 1) + 3v(k- 2) = r(k)- 3r(k- 1) 

give an expTession for its ptdse tmnsfer function using the q variable. 

Solution 8.10 The application of the q-opemtor on this difference equation 
gives 

or 

Hence, by its definition, the pulse transfer function becomes 

1 - 3q-l 
H(q) = 1- 4q-l + 3q-2' 

which can also be presented as 

q2- 3q 
H(q)- --;:---

- q2 - 4q + 3 
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The transfer function can also be presented in terms of the complex 
variable z as a ratio of the Z-transforms as 

U(z) 
H(z) = R(z)' 

Again, the shift in time property of the Z-transforms plays a big role in 
this case. 

Consider again the system difference equation. The Z-transform of this 
equation is 

n m 

i=O j=O 

or 
n m 

i=O j=O 

which gives the transfer function by its definition as 

(8.80) 

This can also be expanded as 

( ) _ bo + b1z- 1 + b2z-2 + b3z-3 + · · · + bmz-m 
Hz- 1 2 3 · ao + a1z- + a2z- + a3z- + · · · + anz-n 

Instead of expressing this transfer function as negative powers of z, it is also 
possible to express it in ascending positive powers of z by dividing both the 
numerator and dominator by the highest negative power of z, giving 

H(z) = zn-m(bozm + b1zm-1 + · · · + bm.-2Z2 + bm-lZ + bm). 
zn + alzn- 1 + · · · + an-2Z2 + an-1Z +an 

(8.81) 

As it has been seen, the transfer function is a rational function in either q 
or z. In any case, the denominator of this transfer function when equated to 
:;cero forms the system characteristic equation. This characteristic function 
plays the same role as was discussed for continuous-time systems, where it 
is used in the stability analysis of the respective systems. Stability analysis 
for discrete-time systems is given in the next sections. The roots of the 
characteristic equation are also known as the poles of the system, while 
the roots of the numerator of the transfer function are known as the zeros 
of the system. Both the zeros and poles play an important role in the 
determination of the system response. 
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Example 8.11 Consider the following input-output relationship for an open-
loop discrete-time system 

u(k)- 4u(k- 1) + 3u(k- 2) = r(k)- 3r(k- 1). 

Determine the poles of the closed-loop system with unity feedback. 

Solution 8.11 The Z-transform of both sides of the given difference equa-
tion gives 

(1- 4z- 1 + 3z-2) U(z) = (1- 3z- 1) R(z) 

from which the open-loop transfer function becomes 

G( ) = U(z) 
z R(z) 

1- 3z-1 

1 - 4z- 1 + 3z-2 
z2 - 3z 

z2 - 4z + 3 · 

With unit feedback, the closed-loop transfer function is then 

T(z) = G(z) 
1 + G(z) 

z2 - 3z 
2z2 - 7z + 3' 

whose characteTist'ic equation is 

2z2 - 7z + 3 = 0. 

Hence, the closed-loop poles which are the solutions of this characteristic 
equation, can easily be computed and are z = ~ and z = 3. 

8.3.5.2 The System Response 

So far, the previous discussion on the solution of the difference equation 
was aimed at determining the time response of the system whose dynamics 
is given by the difference equation, the solution of which is sought, The 
coverage of the system (time) response will thus be limited to systems 
whose transfer function is given rather than the difference equation. It 
will be noted that all this is about the same topic. This is because, as 
discussed in previous sections, the transfer function is just another way of 
presenting the system difference equation, whose solution, is the required 
time response. Nevertheless, the process of determining the time response 
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from the difference equation is simpler because it involves fewer steps than 
the direct calculations than were done previously. 

Consider a system whose pulse transfer function is described in compact 
form as 

m 
I: bjz-j 

H ( z) = ::_7 :c:-0--

I;aiz-i 
i=O 

where this also can be given as 

H( ) = U(z) 
z R(z)' 

The Z-transform of the system response can be written in terms of the 
pulse transfer function H(z) and the Z-transform of the input function 
R(z) as 

U(z) = H(z)R(z). 

The inverse Z-transform of this equation will give the time response of the 
system. There are two possibilities for how to carry out this inversion; 
using the convolution theorem or by direct determination of the inverse 
transform. 

If the inverse Z-transform of both H(z) and R(z) are known, then the 
time respom:e can be determined using the convolution theorem 

k 

u(k) = Lh(j)r(k- j) 
j=O 

k 

= ~r(j)h(k- j), (8.82) 
j=O 

where r(.) and h(.) are the inverse Z-transforms of R(z)and H(z). 
The main disadvantage of this approach is that it doesn't given a general 

form of the solution, and the values of r(.) and h(.) must be known for the 
whole interval from 0 to k. To determine the general form of time response, 
the inverse Z-transform H(z)R(z) must be determined using the method 
of partial fraction expansion as was discussed before. 

If the product H(z)R(z) could be written into its partial fractions as 

H(z)R(z) = FHz) + F2(z) + F3(z) + · · · 
then 

U(z) = F1(z) + F2(z) + F3(z) + · · · 
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Using standard tables, and some properties of the Z-transforms, the in-
verse Z-transform of U(z) can be determined as the sum of the inverse 
Z-transforms of the partial fractions. 

Notice that, since the unit impulse (Kronecker delta) function, 

8(k) = {~ k=O 
k # 0' 

has a unit Z-transform 

~(z) = 1, 

it will be seen that the transfer function H(z) is just the Z-transform of 
the response to a unit impulse. 

U(z) = H(z)~(z) 
= H(z) 

Example 8.12 A system is described by a discrete-time transfer function 

G(z) = ~-5 (z + 0.5) . 
z -1.5z + 0.5 

Determine the system response y(k) to a series of unit step inputs u(.) 

Solution 8.12 The first step is to express the transfer function in ascend-
ing negative powers of z as 

0.5 (z-1 + 0.5z- 2 ) 

G(z) = 1 - 1.5z-1 + 0.5z-2. 

However, the transfer function G(z) is just the ratio 

Y(z) 0.5 (z-1 + 0.5z-2 ) 

G(z) = U(z) = 1- 1.5z-1 + 0.5z-2 • 

Cross multiplication gives 

(1- 1.5z-1 + 0.5z- 2 ) Y(z) = 0.5 (z-1 + 0.5z-2 ) U(z). 

Now, application of the time shift theorem and the definition of the Z-
transform reduces this expression to the difference equation 

y(k)- 1.5y(k- 1) + 0.5y(k- 2) = 0.5u(k- 1) + 0.25u(k- 2) 

" 
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so that the response at time instant k is 

y(k) = 0.5u(k- 1) + 0.25u(k- 2) + 1.5y(k- 1)- 0.5y(k- 2). 

Alternatively, one could use the inverse Z-transform approach as 

Y(z) = 0.5 (z + 0.5) U(z) 
z2 - 1.5z + 0.5 

= [~- l.O ] U(z). z- 1.0 z- 0. 5 

The inverse Z-transform gives 

y(k) = 1.5u(k). (l.O)k-l- u(k)(0.5)k-l 

= [1.5- 2(0.5)k] u(k). 
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Notice that the two results are still the same, although the last result is more 
general, while the first result needs the knowledge of the initial conditions. 

8.3.5.3 Stability Analysis 

Stability From Time Response: The system stability is the center 
of most control system design. It is believed that the study of systems 
control emerged as a result of the need to combat system instability. System 
stability can be considered in two ways; internal stability when no input is 
applied, and external stability when some external input is applied. The 
internal stability dictates the system behavior when no input is applied, 
while the external stability dictates the behavior of the system under action 
of external input. Advanced analysis methods go beyond this categorization 
presented in the next chapter, however, all these methods finally converge to 
the same goal: system dynamic behavior. In this section, both the internal 
and external stability, starting with the internal stability, are discussed. 

From the previous discussion on continuous-time systems it was pointed 
out that the stability of the system is established by its transient (free) 
response. The t)ystem is said to be stable if its transient response decays to 
zero as time grows to infinity. The discussion begins based on this fact. 

External stability: System stability in relation to the input-output 
response is known as external stability. For such a stability, the common 
definition of appropriate response is that for every Bounded Input there 
should be a Bounded Output (BIBO). A test for BIBO stability can be 
given directly in terms of the unit pulse response and examining whether 
such an output response will be bounded within some limits. 

A simple and direct test for the stability of a discrete-time system is 
that credited to Jury, known as Jury's test. This is an equivalent of the 
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Routh-Hurwitz test for continuous-time systems. It needs construction of 
an array composed of coefficients of the characteristic equation. Stability 
can only be ensured if the magnitude of the roots do not exceed 1. This is 
achieved if and only if the four necessary Jury's conditions are met. 

8.3.6 Discretization in the Frequency Domain 

Since most of the processes that are to be controlled have dynamics that 
are continuous-time, there is need to look at ways in that one can design 
the digital controllers to match such dynamics. Earlier, the methods of 
approximating the differential and integral functions to discrete-time dif-
ference equations in time domain were discussed. This section extends these 
ideas to come up with ways in which a continuous-time process ins-variable 
can be transformed into a discrete-time process in z-variable, i.e., in the 
frequency domain. This transformation enables us to design controllers us-
ing continuous principles and then transform them into their discrete-time 
equivalents. The most direct method of digitization of a continuous-time 
processes in the frequency domain is by direct application of the relation-
ship between the Laplace transform and the Z-transform 

which gives 

1 
s=Tln(z). (8.83) 

However, in most cases, such transformation produces complex results be-
cause of the presence of logarithmic functions, so, alternative methods are 
sought. These alternative methods are based on discrete approximation of 
the integral functions that were presented earlier. Recall that a continuous-
time integral signal that 

u(k) = 1k r(t)dt, 

has a continuous-time transfer function from r(t) to u(t) given as 

H(s) = U(s) = ~. 
R(s) s 

This signal can also be written as 

1k-T lk 
u(k) = r(t)dt + r(t)dt 

0 k-T 
= u(k- T) + lk r(t)dt. k-T (8.84) 
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If the integral JLr r(t)dt can be expressed in discrete-time form, it becomes 
possible to determine the discrete-time transfer function from r(k) to u(k) 
which when compared with the continuous-time transfer function makes 
it possible to establish the relationship between s- and z-variables. Since 
the integral JLr r(t)dt can be approximated using one of the methods dis-
cussed, the balance of this section will use the results of this approximation 
to give the corresponding approximate relation between the s-variable and 
z-variable. 

Euler's Backward Rectangular Rule: Euler's backward rectangular 
rule for discrete approximation of integral functions was given as 

so that 

l k r(t)dt = r(k)T 
k-T 

u(k) = u(k- T) + r(k)T. 

Therefore, that its Z-transform becomes 

U(z) = z- 1U(z) + R(z)T 

giving the corresponding transfer function as 

H( ) = U(z) = _T___,. 
z R(z) 1-z-1 

Tz 
z-1 

(8.85) 

Comparison of this transfer function with its continuous version, the equiv-
alent continuous-time discretization of the s variable using the backward 
rectangular rule can thus be obtained as 

z-1 s---- Tz · (8.86) 

Euler's Forward Rectangular Rule: Under the forward rule, the 
approximate integral becomes 

f"k r(t)dt = r(k- T)T. 
lk-T 

This approximation gives the solution as 

v.(k) = u(k- T) + r(k- T)T, 

with the Z-transform 

U(z) = z- 1U(z) + z- 1 R(z)T. 
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The transfer function from r ( k) to u( k) is then 

H(z) _ U(z) _ z-1T 
- R( z) - 1 - z- 1 

T 
z-1 

(8.87) 

Again, comparison with the continuous-time transfer function gives the 
discrete approximation for s as 

z-1 
s=--T . (8.88) 

It is interesting to note the similarity between these approximations and 

those for the differential equations for the differential operator .!!:_ and the 
dt 

shift-in-time operator q. 
The Trapezoidal Rule (Tustin's Approximation): The trapezoidal 

approximation gives an approximate integral as 

j ·k 1 
r(t)dt =- [ r(k- T) + r(k)] T. 

k-T 2 

The complete discrete-time solution becomes 

1 
u(k) = u(k- T) + 2 [ r(k- T) + r(k)] T. 

Again, the Z-transform of this equation gives 

1 U(z) = z-1U(z) + 2r [z-1 R(z) + R(z)]. 

Thus, the transfer function from r(k) to u(k) becomes 

H(z) = U(z) = ~Tz-1 + 1 
R(z) 2 z- 1 - 1 

T(1 + z) 
2(1- z)" (8.89) 

Comparing this result with the continuous-time transfer function gives a 
discrete approximation for s as 

2(1 - z) 8 = _.:,. _ _.:.._ 
T(l + z)" (8.90) 

This approximation is commonly known as Tustin's approximation due 
to his work in this area, and the transformation from s to z using this 
approximation is known as the bilinear transformation. 
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Example 8.13 A system is described by two blocks in series that have 
continuous-time transfer functions 

and 

(1- esT) 
G2(s) = 25 s2 + 26s + 25. 

Determ·ine the closed-loop discrete-time transfer function for the system 
when ·unit feedback is applied. The sampling interval T = O.Ols. Wherever 
necessary, v.se Tustin's approximation. 

Solution 8.13 The combined transfer function of the system is 

G(s) = G1(s)G2(s) 

= [2 (1-e8 '1')(s+5)] 
s2 [ (1- esT) l 

25 s2 + 26s + 25 · 

Using the relationship between the Z-transform and the Laplace transform, 
one can replace the exponential term by z, and by ?Ising Tw;tin's approxi-
mat·ion 

so that 

2(1- z) 
s = T(1 + z)' 

s2 = [ 2(1- z)] 2 
T(1 + z) 

4(1-2z+z2 ) 

T 2 (1 - 2z + z2 ) · 

These replacements give 

G(z) = 150 (l(4z:l[~l~:~'}+ls]) l [ 4(1-2z+z'} rz [2(1-z)l ) 
T 2 (1- 2z + z2) T 2 (1- 2z + z2) + 26 T(l + z) + 25 

25 T 3 ( ( -2 + 5T) z3 + (6- 5T) z2 + ( -6- 5T) z + 2 + 5T) 

2 ( -52T + 4 + 25T2) z + 52T + 4 + 25T2 
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which simplifies further by the use of the value of the sampling interval 
T=0.01 to become 

G(z) = (-0.000 25) 39z3 -119z2 + 121z- 41. 
1393z + 1809 

Now the closed-loop transfer function is given as 

T(z) = G(z) 
1 + G(z) 

( -0.000 25) (39z 3 - 119z2 + 121z- 41) 

1393z + 1809 + ( -0.000 25) (39z3 - 119z2 + 12lz - 41) 

39z3 - 119z2 + 121z- 41 
39z3 - 119z2 - 5. 571 9 x 1Q6 z - 7. 236 x 106 · 

8.3. 7 The State-Space Analysis 

As was shown in the previous sections, mathematical models that de-
scribe the dynamics of sampled data systems in time domain are almost 
always finite-order difference equations whose solutions exist, and in most 
cases, these solutions are unique. Therefore, it is possible to predict the 
behavior of such systems for any time instant t > to expressed at sampling 
instants k if an appropriate set of initial conditions at t = t 0 is speci-
fied. These initial conditions contain all the past behavior of the system 
necessary to calculate the future behavior. This is also true for continuous-
time systems, which are described by differential equations. It was fur-
ther shown in Chapter 7 that the higher-order differential equations can be 
broken down into a set of simple first-order equations which are then pre-
sented in matrix form, using state variables. In this section, the methods 
of breaking higher-order difference equations are introduced. These equa-
tions represent a discrete-time system into first-order difference equations 
and hence combine them into state variable presentation. Generally, the 
discrete-time state-space model can be obtained in two ways; by reduc-
tion of the higher-order system difference equation (which may be obtained 
from the corresponding continuous-time differential equation) or by conver-
sion of the continuous-time state-space model. Both methods are discussed 
startii].g with the reduction of the higher-order difference equation. 

8.3.7.1 Discrete-Time State-Space Model 

Consider the difference equation 

y(k) + 2 y(k- 1) + y(k- 2) = u(k) 
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in which the initial conditions y( -1) and y( -2) are specified and the 
output of interest is known to be y(k). In order to break this difference 
equation into a set of first-order difference equations, the system states 
must be specified first. Since the output is defined to be y(k), then the 
system states at any instant k will be the past values of y(k), i.e., y(k -1) 
and y(k- 2): Thus, the system state vector becomes 

x(k) = [x1(k)] = [ y(k- 2)]. 
x2(k) y(k- 1) 

The first-order difference equations corresponding to each of these states 
are then 

. X1(k + 1) = y(k- 1) = X2(k) 
x2(k + 1) = y(k) = u(k)- y(k- 2)- 2 y(k- 1) 

= u(k)- x1(k)- 2x2(k). 

Putting these equations together in matrix form yields 

[x1(k+ 1)] = [ 0 1] [x1(k)] +[OJ. u(k). (8.91) x2(k + 1) -1 -2 x2(k) 1 

The output y(k) can also be presented in terms of the system states as 

y(k) = u(k)- y(k- 2)- 2 y(k- 1), 

which in matrix form becomes 

y(k) = [ -1 -2] [ ~~~~n + [~] u(k). (8.92) 

Equations 8.91 and 8.92 together form the vector-matrix difference equa-
tion that describes the evolution of the state and an output equation instead 
of the second-order difference equation. Algebraically, these equations are 
written in compact form as 

x(k + 1) = Fx(k) + Gu(k) 
y(k) = Hx(k) + Ju(k), 

(8.93) 

(8.94) 

where matrices F, G, H, and J are the plant (also known as the state-
transition matrix) input, output and feedfoward matrices similar to matri-
ces A, B, C, and D for continuous systems. 

This discussion can be generalized for any system described by a general 
difference equation of the form 

n m L aiy(k- i) = L bju(k- j), 
i=O j=O 
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which can be expressed as 

m n 

(8.95) 
j=O i=l 

where, in this case, the output of interest is y(k). Dy identifying the system 
states as 

Xa(k) = y(k- a) a= 1, 2, · · · · · · , k- 1, 

the following is true for the state equation 

x 1 (k + 1) = :r2(k) 

:r2(k + 1) = x3(k) 

Xn-l(k + 1) = Xn(k) 
n m 

Xn(k + 1) =-L a;x;(k- i) + L bju(k- j). 
i=l j=O 

In matrix form this becomes 

[x,(k+1)1 0 1 0 
[ x,(k) 1 0 0 0 

X2.\~ .~.1) = 0 0 0 X~~~) + 0 0 0 

Xn(k + 1) Xn(k) 
: 1 -al -a2: -an 1 1 

where u;(k) = u(k i). Also, the output equation 

n m 

y(k) =-L a.;x;(k) + L btu(k- j), 
i=l j=O 

becomes 

[ 
u1(k) 1 u2(k) 

u,:,·(·k) ' 

(8.96) 

Again in compact form it can be written as shown earlier. If the transfer 
function G(z) is given the transformation to the state-variable form can be 
carried out indirectly as shown in the following example. 
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Example 8.14 Derive the state description of the system with the follow-
ing transfer function 

G(z) = 0.5 (z + ;) 
(z- 1) 

Solution 8.14 Express the transfer function as a rational function in which 
both the nv.meratoT and the denominator are in ascending poweTs of z. This 
gives 

G(z) = 0.5(z + 1) 
z2 - 2z + 1 

0.5(1 + z- 1 ) 

1- 2z-1 + z-2 · 

By defining an intermediate vaTiable X(z) sv.ch that 

G(z) = Y(z) = Y(z) X(z) 
U(z) X(z) U(z) 

and letting 

X(z) 0.5 
U(z) 1- 2z-l + z-2 

gives 

(1- 2z-1 + z-2 ) X(z) = 0.5U(z). 

Hence, 

:r(k)- 2x(k- 1) + x(k- 2) = 0.5u(k) 

Defining the states as 

x1(k) = x(k) 
X2(k) = X1(k -1), 

leads to 

x2(k-1) =x(k-2) 

= -x1(k) + 2x2(k) + 0.5u(k). 

In matTix form this becmnes 

[x1 (k -1)] _ [ 0 1] [x1 (k)] [ 0 ] 
x2(k 1) - -1 2 x 2 (k) + 0.5 u(k) 
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The rema'ining part of the transfer function, 

gives 

OT 

Y(z) = 1 + z-1 
X(z) 

Y(z) = (1 + z- 1) X(z), 

y(k) = x(k) + x(k- 1) 
= x1(k) + xz(k). 

In matrix form it becomes 

y(k) = [11] [xl(k)] xz(k) 

completing the state-space description. 

8.3.7.2 Discrete-Time State Model from Continuous-Time Model. 

Alternatively, if the continuous-time state-space model 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

is known, the discrete-time state-space model can still be established di-
rectly from this continuous-time model. Recall that the solution of the 
linear model is 

x(t) = eA(t-ta)x(ta) +it eA(t-r)Bu(T)dT. 
to 

This solution can be used to transfer the continuous-time system model to 
discrete-time model as follows: 

Let t 0 = k and t = k + T where T is the sampling interval. Applying the 
continuous-time solution over this sample interval gives 

When using Zero Order Hold (ZOH) with no delays in the system, it follows 
that 

u(T) = u(k) for k :::; T:::; ( k + T) . 
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By letting 

k+T-T='T) 

it follows that for T = k the value of 'T) will be T, and for T = k + T, the 
value of 'T) becomes 0. Differentiation with respect toT gives 

Substitution of these values results in 

which can be rewritten as 

Now if 

F= eAT 

T 
G = 1 eA17 d'T]B 

the above equation can then be expressed as 

x(k + T) = Fx(k) + Gu(k), 

(8.97) 

(8.98) 

(8.99) 

(8.100) 

which is the state-space equation, the same as Equation 8.93. At any time 
t = k the output equation can be derived to be almost the same as that of 
the continuous-time system, which will be 

y(k) = Hx(k) + Ju(k) (8.101) 

These two equations, 8.100 and 8.101, are the ones that describe the discrete-
time state-space model of the system. 

Most often, it is required to establish the state-transition matrix F = 
eAT. This is a matrix exponential whose evaluation was shown in Chapter 
7 as 

A2T2 A3T3 Anrn 
=I+AT+--+--+···+--+······ 2! 3! n! 

oo Anrn 
=I::~· 

n=O 
(8.102) 
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The output matrix G can be obtained by evaluating term by term of the 
integral in Equation 8.99 after expanding the matrix exponential eA'I. Since 

(8.103) 

then 

co Anrn+l 

= L (n+l)!B. 
n=O 

(8.104) 

If the sampling interval is small enough, only very few terms are needed in 
these infinite summations. Normally two to four terms are sufficient. 

Example 8.15 The continuo·us-time state-space description of a system is 
given by 

where 

x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t), 

A=[i:] B= [1.0] 
2.0 

C=[ll] D=O 

Give the corresponding disC'rete-time state-space desc7'iption of this system 
using a sampling interval of O.OOlsec 

Solution 8.15 The solution is obtained by direct application of the equa-
tions, where 

F =~An (O.OOlt 
~ n! 
n=O 
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With the given samplin!J interval, only two terms may be sufficient, so that 

F =~An (O.OOit 
L,.; n! 
n=O 

=I+ A(0.001) + A2(0.001)2 
2 

[~ n + [~ :J (0.001) + [~ :r (0.0~1)2 
[ 1. oo2 4. oo2 x w- 3 J 

1. ooo 5 x w-3 1. oo5 · 

For matrix G even only one term is enough 

00 Anyn+l 
G= ~ (n+1)!B 

2 Anyn+l 
= ~ (n+ 1)! B 

[
I A (0.001) 2 A 2 (0.001) 3 ] 
+ 2 + 3! B 

[ 1.0] 
2.0 

The matrices H and J remain the same as C and D of the continuous-time 
system 

H=[11] J =[OJ 

and the discrete-time state-space description becomes 

x(k + 1) = Fx(k) + Gu(k) 

y(k) = Hx(k) + Jx(k). 

(8.105) 

(8.106) 

As can be seen in this example, the higher the sampling rate, the closer the 
system is to the continuous-time transfer function. The reader can try for 
the case when the sampling interval is 0.1 sec. 

8.3. 7.3 Controllability, Observability, Canonical Forms, and the 
Transfer Matrix 

When the system is presented in discrete-time form using state vari-
ables as shown above, the analysis of controllability, observability, similar-
ity transforrnation and canonical forms are done in exactly the same way as 
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it was shown for continuous-time systems in Chapter 7. More importantly, 
it can be shown without going into details that by taking the Z-transform 
of both Equations 8.105 and 8.106 give 

zX(z) = FX(z) + GV(z) 
Y(z) = HX(z) + JV(z). 

From Equation 8.107 can be seen that 

X(z) = (zi- F)- 1 GU(z), 

which, when used in, Equation 8.108 leads to 

Y(z) = H (zi- F)-1 GU(z) + JV(z) 

= (H (zi- F)- 1 G + J) U(z). 

From this equation, the transfer matrix is obtained as 

G(z) = H (zi- F)- 1 G + J, 

(8.107) 

(8.108) 

(8.109) 

which is similar in form to the one obtained for continuous-time systems. 
For SISO systems where G is a column vector and His a row vector, this 
transfer matrix becomes a scalar function, known as the transfer function. 

8.3.8 The Root Locus in the Z-Plane 
For a long time now, the root locus has been a very powerful method for 

analysis and design of both continuous-time and digital control systems. It 
gives a graphical representation of the variation of the roots of the closed-
loop characteristic equation as a function of gain parameter variation. It 
was shown in earlier chapters for continuous-time systems that the root lo-
cus enables the design of the controller that meets a number of time domain 
as well as frequency-domain specifications, which include the damping ra-
tio, speed of response, settling time and natural frequency. The same fact 
applies for discrete-:-time systems with some very minor modifications. 

Consider a closed-loop transfer function of a discrete-:-time system 

Y(z) KG(z) 
T(z) = U(z) = 1 + KH(z)G(z)' (8.110) 

whose characteristic equation is 

1 + KH(z)G(z) = 0. (8.111) 

As the gain K varies, the roots of this characteristic equation will also 
vary. The plot of this variation in the z-plane is known as the discrete-
time root locus. Since H(z)G(z) is normally a rational function in z, for 
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J{ = 0, the roots of the characteristic equation will be the roots of the 
denominator of H(z)G(z), and for K = oo, the roots of the characteristic 
equation correspond to the zeros of H(z)G(z). In short, the root locus 
will start from the poles of H(z)G(z) and end at the zeros of H(z)G(z) 
in just the same way as for the continuous-time systems. In particular, if 
H(z) = 1, i.e., unity feedback, then the roots of the characteristic equation 
starts from the poles of G(z) and end at the zeros of G(z). Generally, the 
techniques for plotting the discrete-time are basically the same as those of 
continuous-time systems, and they will not be repeated here. 

Though the plotting techniques are the same for continuous-time systems 
as for the discrete-time systems root loci, the interpretation of the results 
differ. While for continuous-time systems the stability zone is enclosed 
in the left-hand half plane, for discrete-time systems, the stability zone is 
enclosed in the unit circle about the origin of the z-plane. This is due to 
the transformation of the s-pane into the z-plane by 

z =esT 

where for Re (s) :::; 0, the magnitude of z is bound as lzl :::; 1. 
Since the lines of constant damping ratio for continuous-time systems are 

determined by the angle e where 

~ = cose 

such that for any value r, 

s = r (- cos e + j sin e) . 
In the z-plane, these lines are mapped to be 

Z = er(- cos e+j sin e)T 

which is a curve starting at z = 1 for r = 0 to any value between 0 and 
-1 depending on the value of the damping ratio. For ~ = 0, the constant 
~ curve is a semicircle from 1 to -1. Because of the symmetry of cos e and 
cos ( -8) about real axis, the lines of constant ~ are also symmetrical about 
the Re(z). Similarly, lines of constant damped frequency wd, which in the 
continuous-time system are circular about the origin of the s-plane, are 
given by 

Wd=WnR· 

Depending on the natural frequency of the system Wn, in the discrete-time 
domain are mapped according to 

(8.112) 

Figure 8. 7 is a continuous-time s-plane showing lines of constant ~ as well 
as circles of constant wd in the stable zone and Figure 8.8 shows how this 
plane is mapped into the z-plane. 
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Root Locus in the Z-Plane 
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8.3.9 The Frequency-Response Analysis 

8.3.9.1 Exact Frequency Response 

10 

Just like continuous-time systems, time response methods are sometimes 
inadequate in handling higher-order systems, while frequency-response meth-
ods are versatile in this aspect. Using the advantages of the correlation 
between the frequency response and the time response of systems, it be-
comes necessary to study the frequency response of dynamic systems so 
that controllers can be designed from this domain. 

The frequency response analysis of discrete-time systems can be viewed 
as an extension of the frequency response of continuous-time systems, which 
gives the behavior of the system when a sinusoidal input r(t, w0 ) where 

r(t,wa) = Asin(w0 t), 

is applied for varying the· frequency, W 0 , in the range [O,oo). If the open-
loop transfer function of the system is G(s), the common procedure used 
for continuous-time system in studying the frequency response is letting 
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1 

s = jw0 so that G(s) = G(jw0 ) can be expressed in terms of magnitude 
and phase angle tp as 

as discussed in Chapter 6. The frequency response of such a system is deter-
mined by observing how the magnitude and phase vary with the frequency 
w0 • Methods of examining this variation include the Bode plots, Nyquist 
plots, polar plots, and the Nichols charts as described in detail in Chapter 
6. 

For digital systems, the frequency response is obtained by using similar 
formulation, which includes discretization of continuous-time signals using 
appropriate means, as discussed before. The most direct discretization 
method is using the analytical relationship between the z-variable and s-
variable 

Since for the continuous-time systems the frequency response is obtained 
by letting s = jw0 , then the corresponding formulation for discrete-time 
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system G ( z) is to let 

so that 

(8.113) 

This can be shown analytically by considering a sinusoidal discrete-time 
signal r(k,w0 ) applied to a system G(z), which gives the system response 
as 

U(z) = G(z)R(z), 

where the Z-transform for a sinusoidal signal, 

r(k,w0 ) = Acos(w0 Tk), 

is 

Rz =- . + . . () A[ z . z ] 
2 z _ eJwoT z _ e-JW0 T 

The system response then becomes 

U(z) = A [ zG(_z) + zG(~) ] . 
2 z- eJWoT z- e-JWoT 

(8.114) 

Now, the steady state response U 88 (k) corresponds to U(z) when z has 
stable poles. In this case, G(z) takes on the values G(z = eiwoT) and 
G(z = ciwoT). This fact can also be verified by expansion of the equation 
into partial fractions and applying the final value theorem. Thus, 

Since 

and 

then 

G( eiwoT) = IG( eiwoT) I ejc/J(woT) 

G( e-iwoT) = IG( e-iwoT) I e-jc/J(woT) 
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whose inverse Z-transform gives 

This can be simplified to 

(8.115) 

indicating that the steady state response to a discrete-time sinusoidal signal 
can be expressed in terms of the magnitude and phase angle of G(z = 
eJWaT). 

However, because of aliasing inherent with discrete-time systems, the 
frequency may not be varied indefinitely as it is done for continuous-time 
systems. Instead, the frequency variation is taken in the range 

W 0 E [0, ~ws]· 

Notice that, as W 0 is varied from 0 to ~w8 , the value of z, which is given by 

=cos (waT) + j sin (w 0 T) 

( 2~W0 ) . (2~W0 ) = COS ~ + j Slll ~ , (8.116) 

and will vary along a circle of unit radius. Beyond this frequency range, 
the value of z keeps repeating itself about this unit circle. 

With knowledge of the phase angle and magnitude of G(z) in the fre-
quency range defined above, Bode plots as well as Nyquist plots can be 
made and will look similar to those for continuous-time systems. Computer 
Aided Systems Analysis and Design (CASD) packages are available that can 
accomplish this task. In MATLAB, the routines "dbode," "dnyquist," and 
"dnichols" are available for the same. Details of using these commands 
can, as usual, be found in MATLAB Control Toolbox manual, here a brief 
description of each of these commands is given as follows: 

The syntax for using the "dbode" is 

dbode(N, D,Ts) 

where N and D are vectors containing the polynomial coefficients of N(z) 
and D(z) in ascending powers of z when the system is given in the form 

N(z) 
G(z) = D(z), 
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Bode Diagrams 
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FIGURE 8.9 
Discrete Time Bode Plot 

and Ts is the sampling interval. However, if the system is given in discrete-
time state-space form 

x(k + 1) = Fx(k) + Gu(k) 

y(k) = Hx(k) + Ju(k), 

then the command d bode is used as 

dbode(F, G, H, J, Ts, lu). 

This function plots the Bode plot from the single input Iu to all outputs of 
the discrete-time state-space system. In both cases of the dbode command 
above, the frequency is chosen automatically. When the interest is to get 
the Bode plot in specific frequency range, it becomes necessary to include 
a vector W in the dbode command that describes the frequencies in radians 
per second at which the Bode response is to be evaluated. The syntax in 
this case takes the form 

dbode(N,D,Ts,W) 

dbode(F, G, H, J, Ts, lu, W). 

A typical discrete-time system Bode plot is shown in Figure 8.9. 



Digital Control Systems 647 

The MATLAB "dnichols" command produces a Nichols plot for a discrete-
time linear system described in either polynomial transfer function G(z) or 
in state-space form (F, G, H, . The general usage of the command is sim-
ilar to the "dbode" command described above. Its syntax is 

or 

dnichols(N,D,Ts) 

dnichols(F, G, H, J, Ts, lu) 

dnichols(N,D,Ts,W) 

dnichols(F, G, H, J, Ts, lu, W), 

where all variables have same meaning as described for the "dbode" com-
mand. Figure 8.10 shows a typical discrete-time Nichols chart. 
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The discrete-time Nyquist plot is generated by MATLAB by command 
"dnyquist." Similar to the "dnichols" command, this command also has a 
general form and usage as is for the "dbode" command, with all parameters 
taking on the usual values. Thus, the syntax for the "dnyquist" command 
becomes 

dnyquist(N,D, Ts) 

dnyquist(F, G, H, J, Ts, lu) 
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or 

dnyquist(N,D,Ts,W) 

dnyquist(F, G, H, J, Ts, lu, W). 

A typical Nyquist plot is shown in Figure 8.11. 
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FIGURE 8.11 
A Typical Nyquist Plot 

Recall that the measures of performance in frequency response domain 
are the gain margin, phase margin and the bandwidth. A study of the 
discrete-time Nyquist plot for varying sampling rates is given in Figure 
8.12. As can be seen in this figure, the sampling rate affects the frequency 
response of the system by decreasing both the gain margin and the phase 
margin. For high sampling rates, the frequency response of the system 
approximates the continuous-time plot, however, as the sampling rate de-
creases, both the gain margin and the phase margin decrease leading to the 
eventuality of instability. Thus, the frequency response also dictates the 
required sampling rate for the system to remain stable. 

8.3.9.2 Approximate Frequency Response: the w-Plane and Bi-
linear Transformation. 

The exact frequency response dic;cussed in the preceding section involves 
functions of the form eJwaT, which makes the analysis too complex to be 
done manually. Thus, use of computers becomes indispensable. However, 
there are many cases where the design engineer must do the analysis manu-
ally, in which case a simple alternative method to the one presented before 
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needs to be available. The simpler approach to frequency response, which 
does not need evaluation of the complex eiwoT, is an approximation that 
transforms the Z-plane to another plane called the w-plane which is sim-
ilar ( conformally equivalent) to the complex s-plane. The transformation 
employed is called the bilinear transformation, defined as 

1+w 
Z=--

1-w' 
(8.117) 

which was partly derived. The w-plane is another complex plane which 
defines the w-variable as 

(8.118) 

In this w-plane, the true frequency response w0 in the z-plane is presented 
using an approximate frequency Vw, whose value can be determined directly 
from the relationship between the z-variable and the s-variable. Equation 
8.117 can be rearranged to give 

z-1 
w=--

z+1 
(8.119) 

where 

Z =esT 

= e(O"+jwo)T 
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It then follows that 
e(a+]wo)T _ 1 

W = e(u+jwo)T + 1' (8.120) 

Now, for frequency response analy8is, consider only the complex (frequency 
axis) where u = 0. This gives the expression for the frequency response in 
the w- plane as 

Simplification of this gives 

or simply 

By expressing 

[
ejw 0 T _ 1] 

. T eJWo + 1 · T z=eJwo 

[
CCJ8W0 T + j sinw0 T- 1] 
COSW 0 T + j sinw0 T- 1 . 

Vw = 
j sinw0 T 

1 + COSW 0 T 

sinw0 T = 2sin (~waT) cos (~w0T) 

cos W 0 T = cos2 ( ~woT) - sin2 ( ~w0T) , 

the approximated frequency in the w-planc becomes 

Vw =tan (~waT). 

This indicates that the frequency Vw in thew-plane is distorted. To counter 
2 

this distortion, the result is normally multiplied by T so that 

I 2 ( 1 ) Vw = Ttan zWoT . 

Notice that this corresponds to doing the analysis in another w'-plane, 
which results from Tustin's approximation 

w' = ~ [; ~ ~]. 
Under this approximation, for small T, the frequency in the w'-plane is 
almost equal to that in the z-plane, however, as T is made larger, sev-
eral deviations are noticed. For most practical applications, the sampling 
frequency is taken to be in the range 

0 < W < Ws 
- 0- 4 
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This approximation can further be improved by employing pre-warping 
techniques, which will not be discussed here. 

After this approximation is done, the analysis can then be carried out us-
ing continuous-time frequency analysis methods including all parameters of 
interest such as the gain margin, phase margin, bandwidth, and sensitivity. 

8.4 Design of Discrete Time Controllers 
8.4.1 Controller Feasibility: the Concept of Causality 

Some controller configurations might be theoretically attractive but prac-
tically infeasible. They become theoretically attractive if from a theoretical 
point of view they present very good system response as per specificationo. 
On the other hand, they may be practically infeasible if their difference 
equation quantities, which are ahead of time, are included. Consider a 
controller of the form 

D(z) = U(z) = aa + a1z + a2 z 2 + · · · + anz" 
E(z) 1 + b1z + b2z2 + · · · + bmzm 

n>m. 

This controller can be written in negative powers of z as 

U(z) aaz-m + a1z-m+l + a2z-m+ 2 + · · · + anz-m+n 
E(z) z-m + b1z-m+1 + b2z-m+2 + · · · + bm 

which gives the following difference equation 

u(k- m) + b1u(k- m + 1) + b2u(k- m + 2) + · · · + bmu(k) 
= a0 e(k- m) + a1e(k- m + 1) + · · · + ane(k- m + n). 

Thus, the control signal at instant k will be given by 

u(k) = b;;-/{aae(k- m) + a1e(k- m + 1) + 
· · · + ane(k- m+n)- u(k- m)- · · ·- b1u(k- 2)- b2u(k -1)}. 

(8.121) 

Now, since n > m the error term e(k- m + n) will be ahead of time k by 
(n m), i.e., at the time k, the controller will require error signals that are 
at time (k + n- m), which are practically not available. This renders the 
controller infeasible. Such a controller is known technically as a non-causal 
controller. In order to illustrate this concept further, let us assume that in 
the controller given above, m = 1 and n = 2 so that the control difference 
equation becomes 

(8.122) 
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which needs the error value at time k + 1 in order to general the control 
signal required at time k. 

In control applications, non-causal controllers should be avoided, even if 
they offer very attractive analytical results. 

8.4.2 Pole-Zero Matching Control Technique 

The pole-zero matching design technique is just an application of the 
continuous-time design methods in s-domain to the discrete-time systems 
in the z-domain. This technique allows the controller to be designed in 
the s-plane and then transferred in the z-plane. In some applications, 
this technique is known as the emulation technique. Basically, when the 
controller is designed in the continuous-time domain, it is then digitized by 
using the relationship 

The technique requires the continuous-time poles and zeros of the controller 
to be preserved by the discrete-time controller, and hence the name "pole-
zero matching." The technique assumes that for every continuous-time 
controller there is an equal number of poles as the zeros. Therefore, if the 
degree of the numerator is less than that of the denominator, then some of 
the zeros are infinity. Thus, for the continuous-time controller 

n n (s- Zi) 
D c ( s) = K c ~i;;;-"1:..__ __ 

TI(s-pj) 
j=l 

n < rn, (8.123) 

where { zi} 7= 1 and {Pj} ;~ 1 are the zeros and poles respectively, there are 
(m- n) zeros at infinity. Now, the discrete-time controller which emulates 
this continuous-time controller must map all poles according to 

and zeros according to 

whereas those zeros and poles (if any) that are at infinity are mapped to dig-
ital zeros at z = -1 and the zeros at s = 0 are mapped into corresponding 
digital zeros at z = 1. Finally, the DC gains for both the continuous-time 
controller and the discrete-time controller must be matched according to 
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Thus, the digitized version of the continuous controller in Equation 8.123 
is given by 

(8.124) 

While this method is the fastest and simplest of all because of the fact 
that most systems found in real life are continuous-time in nature, so that 
analysis and design in the continuous-time domain seem more appealing. 
The presence of the ZOH element in the actual digital system, which is 
not taken into account when designing the continuous-time controller and 
hence the resulting digitized controller, causes functional problems with 
controllers designed this way. For most applications, this approach is only 
suitable if the sampling rate is very high to the level that the whole system 
can be considered as a continuous-time system. The use of this method is 
illustrated in the following example. 

Example 8.16 Employ the pole-zero matching technique to derive a discrete-
time controller equivalent to the following continuous-time controller 

4s+3 
Dc(s) = 3s2 + 5s + 2' 

for a general sampling interval T and at a sampling rate of 0.005s. 

Solution 8.16 Write the controller in the pole-zero form as 

D 8 _ 4(s+0.75) 
c( ) - 3(s + 1)(s + ~)' 

which can be seen to have zeros at s = oo, and s = -0.75, while the poles 
are at s = -1, and s = -~. The continuous-time DC gain Kc = ~

Therefore, the equivalent discrete-time controller will have corresponding 
zeros at z = -1,and z = e-0·75T while the zeros will be at z = e-T and at 
z = e-~T Therefore, the resulting discrete-time controller will be 

To determine the steady state gain, set 
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which gives 

so that 

4(s + 0.75) I 
3 ( S + 1) ( S + ~) s=O 

KD(z + 1)(z- e-o~75T) I 
(z- e-T) (z- e-JT) z=l 

1 _ e-· 75T 

-T - e 3 ( 
1 _:Jy ) 

Ko=0.75(1-e ) 1 _e __ 75T . 

This gives the equivalent discrete-time controller for a gener-al sampling 
interval T as 

and at a sampling rate of 0.005s it becomes 

D ( ) = 3. 325 7 x 10_ 3 (z + 1) (z- 0. 996 26) . 
D z (z- 0. 99501) (z- 0. 99667) 

8.4.3 The Pole Placement Methods in the z-Domain 

Pole placement methods are useful when the required positions of poles 
in the controlled system are known. For a given pole location, the controller 
is designed and included in the system so that the poles of the controlled 
system coincide with those of the required system dynamics. To achieve 
proper pole placement, three methods are discussed as follows: 

8.4.3.1 The Root-Locus Method 

Just like the root locus method for continuous-time systems, this method 
gives the values of the same control parameters that place the poles of the 
transfer function within a unit circle with damping and natural frequency, 
as required in the design specification. In general, this technique is not 
much different from the one that has been seen for continuous tine systems 
in that it looks for the values of the controller parameters, which together 
brings about the required system dynamics from the root locus of the sys-
tem. 
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8.4.3.2 Polynomial Method 

The polynomial method compares the characteristic polynomial of the 
required system dynamics to that for the controlled system by equating the 
coefficients of the two polynomials. The controller parameters are selected 
so that the coefficients of the two polynomials will be equal. 

8.4.3.3 State-Space Method 

From the discrete time state-space presentation of a system pole place-
ment is then carried out using the methods similar to those discussed in 
Chapter 7 with very minor differences, depending on the difference in the 
domain of analysis. 

8.4.4 The Frequency-Response Design Methods 

8.4.4.1 Bilinear transformation methods 

This is a discrete-time transform that is introduced in the frequency 
methods so that many of the design features that are found in continuous-
time systems are preserved. The basic idea is to introduce a new variable 
w with a defined bilinear mapping that allows the compensator to be de-
signed in the w-plane and the final result converted back to the z-plane. 
This transformation technique is discussed in detail, pointing out its ad-
vantages in the frequency-response design. 

8.4.4.2 Compensator design 

When the frequency-response design specifications such as the Gain mar-
gin and Phase margin are known, one can design the phase lead, phase lag, 
and the lead lag compensators just as is done in the continuous time sys-
tems. A discussion on the discrete-time compensator design is thus given 
with examples. 

8.4.5 The Discrete Time PID Controller 

The general performance of the discrete-time PID controller is the same 
as the continuous-time PID controller. All characteristics of the PID con-
troller discussed on the continuous-time systems apply well to discrete-time 
systems subject to some adjustments of the discrete-time version. Ways of 
implementing the discrete-time PID controller are discussed. 
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It was shown that the continuous-time three term PID control has the 
general form 

KI D(s)=Kp+-+Kns, 
s 

(8.125) 

where the three parameters or gains Kp, K1, and Kn are chosen to give the 
desired system dynamics. These gains are normally known respectively as 
the proportional, integral, and derivative gain. As a matter of convenience, 
this controller is normally presented as 

D(s) = Kp (1 + T:s +Tns), (8.126) 

where the three parameters K p, Tr, and Tn give a complete description of 
the controller. While Kp is the proportional gain, T1 and Tn are known as 
the integral (or reset) time and derivative time respectively. 

The function of each of these terms in controlling the system has been 
well explained in Chapter 4, where it was shown that the proportional gain 
improves the system responsiveness, but at a cost of introducing steady 
state error and some degree of instability (oscillations). The derivative term 
introduces some damping in the system dynamics to curb the oscillations 
created by the proportional gain while the integral term reduces the steady 
state error produced by the proportional gain. While it is possible to employ 
only the proportional controller, the derivative and the integral controllers 
cannot stand alone in controlling the system. The methods of tuning these 
gains have also been discussed, in particular the Ziegler-Nichols method. 

In this section, ideas presented for the continuous-time system will be ex-
tended to cover the discrete-time systems. Recall that the transfer function 
for the continuous-time system is defined as 

U(s) 
D(s) = E(s)' (8.127) 

where the U ( s) and E( s) are the Laplace transforms of the control signal 
and the error signal respectively. 

8.4.5.1 Proportional Controller (P) 

The continuous-time proportional controller is just the amplification of 
the control error signal. Proportional control implementation involves mul-
tiplication of the error signal with appropriate amplification factor as the 
design may require. In general, it has been shown that the transfer function 
for the continuous-time proportional controller is 

D(s) = Kp, 
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which gives the control signal as 

U(s) = D(s)E(s) 
= KpE(s). 

The corresponding time domain representation is simply 

u(t) = Kpe(t). 
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Therefore, at any sampling instant k, the control signal in the discrete-time 
environment becomes 

u(k) = Kpe(k). (8.128) 

In order to derive the discrete-time equivalent of the proportional controller 
D(z), first take the Z-transform of Equation 8.128, which gives 

U(z) = KrE(z), 

from which the proportional controller is derived as 

Dp 

D(z) = U(z) 
E(z) 

=Kp. 

This shows that the discrete-time proportional controller has the same gain 
as that of the continuous-time system. 

8.4.5.2 Integral Controller (I) 

Implementation of the digital integral controller involves numerical inte-
gration of the error signal or numerical differentiation of the control signal. 
The common numerical differentiation and integration methods, which in-
clude the trapezoidal rule (also known as the Tustin's rule or the bilinear 
transformation) and Euler's forward as well as the backward rectangular 
rules, have been described. 

If the continuous time derivative controller were to stand alone, its trans-
fer function would have been 

so that 

Kp 
D(s) = -T , 

JS 

Kp 
U(s) = -T E(s). 

]S 
(8.129) 
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This can also be written as 

Kp 
U(s)s = TI E(s). (8.130) 

In time domain, Equations 8.129 and 8.130 can be written respectively as 

and 

K t 
u(t) = T; Jo e(t)dt 

du(t) _ Kp () 
dt - T1 e t · (8.131) 

Employment of different numerical methods on these two equations leads 
to different versions of the discrete-time integral controller, however, the 
most popular method employed is the one that requires that the control 
signal be a function of all past values of the control and error signal as well 
as the current error signal. Derivation of such a controller stems from the 
application of Euler's backward approximation of the differential equation, 
which gives 

u(k)- u(k- 1) = Kp (k) 
T T1 e ' 

such that 

KpT 
u(k) = u(k -1) + ---r;-e(k), (8.132) 

where Tis the sampling interval. Notice that, since all past values of e(.) 
up to (k -1), as well as the past values of u(.) up to (k- 2), are embedded 
in u(k -1), then this controller will be employing information from all past 
values of u(.) up to (k -1) as well as e(.) up to k. In implementation, this 
poses a problem known as the integral wind-up effect, or simply the reset 
wind-up in which the total error at time k grows beyond some allowable 
limits. 

The Z-transform then gives 

1 Kp 
U(z) = z- U(z) + TI E(z) 

whose rearrangement gives 

U(z) [1- z- 1] = ~; E(z) 
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so that 

D( ) = U(z) 
z E(z) 

Kp 
Tr [1- z- 1] 

Kpz 
l](z- 1)' 

8.4.5.3 Derivative Controller (D) 
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(8.133) 

If the continuous-time derivative controller were to stand alone, its trans-
fer function would have been 

D(s) = U(s) 
E(s) 

= KpTDs. 

The inverse Laplace transfer gives this control signal in the time domain as 

(8.134) 

Again, the intention here is to derive the control signal as a function of all 
past error signal up to time k. However, in this case, it doesn't need all past 
values, only the current and the previous error signals are sufficient as shown 
below. By employing Euler's backward rule of numerical differentiation, the 
error signal at time k gives 

de(t) I 
dt t=k 

e(k)- e(k- 1) 
T 

where T is the sampling interval. Therefore, by using this approximation 
at any sampling instant k, it follows that 

(k) f~ T e(k)- e(k- 1) 
u =.\pD T 

KpTD 
= -T- [e(k)- e(k- 1)]. 

Now the Z-transform of this expression gives 

KpTD [ 1 ] U(z) = -T- E(z)- z- E(z) 

= K~D E(z) [1- z- 1] 
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so that 

D( ) = U(z) 
z E(z) 

= K~v [1- z-1] 

KpTv (z- 1) 
Tz 

Notice that, although by using Euler's forward rule, one may be tempted 
to do the same derivation, such a controller will have practical limits, as it 
will require error signals that are ahead of time. 

8.4.5.4 The Complete PID Controller 

Using the results in the previous sections, a complete PID controller can 
now be constructed as follows: 

or 

( Tz Tv(z-1)) 
D ( z) = K P 1 + TI ( z - 1) + T z 

= J(p TI(z- 1)Tz + T 2 z 2 + TvTI (z- 1)2 

T1(z- 1)Tz 
(TIT+ T 2 + TvT1) z2 + (-TIT 2TvTI) z + TvTr 

=Kp~----------~--~~------------------
TrTz2- TrTz 

The control difference equation can then be evaluated from 

which gives 

U(z) 
D(z) = E(z)' 

(1- z- 1 ) U(z) 

J( 
= PT [(TIT+ T 2 + TvTI) + (-TIT- 2TvTI) z-1 + TvTiz- 2 ] E(z). 

Tr 
Hence, the inverse Z-transform gives 

u(k)- u(k- 1) 

= Kp [(TIT+ T 2 + TvTr) e(k) + ( -TrT- 2TvTI) e(k- 1) + TvTie(k- 2)]. 
TrT 
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Hence, the control signal becomes 

u(k) = u(k- 1) + 

~; [(TIT+ T2 + TDTI) e(k) + (-TIT- 2TDTI) e(k -1) +TDTie(k- 2)] 

= u(k- 1) + Ae(k) + Be(k- 1) + Ce(k- 2), 

where 

Kp ( 2 ) A = TIT TIT+ T + TDTI 

Kp 
B =-(-TIT- 2TDTI) 

TIT 

C= KpTD. 
T 

8.4.6 Implementation of Digital Control Systems 

(8.136) 

In the implementation of digital control systems two distinct issues have 
to be addressed, hardware issues and software issues. This section gives a 
brief overview of such issues in real application. 

The hardware to be used in the construction of digital control systems 
needs to be fast enough to go with the real system dynamics. The qualities 
of the hardware for control are discussed under this section. There must be 
a cost balance between the hardware and the controlled system in general. 
Memory requirements and the single board computers (microcontrollers) 
are discussed. 

Transformation of the controller difference equations into software is ex-
plained. Software for control must be fast to match with system dynamics, 
hence, items of interest in implementing software for control are discussed. 
The real time computing techniques should be addressed and particular 
emphasis placed on multitasking policies. Techniques for handling integral 
and reset wind-up effects are essential. 

Normally after designing the software and the hardware, the two will 
have to be integrated. Before the system is put into operation, it must be 
tested and debugged where necessary. In any software and the hardware 
must be compatible. All such issues should be discussed. 
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8.5 Problems 
Problem 8.1 Assess the controllability, observability, and stability of the 
following digital system. 

[ -1 0.8 ] [ 1] x(k + 1) = 0.5 -1.6 x(k) + 2 u(k) 

y(k) = [ 1 0] x(k) +[OJ u(k). 

Problem 8.2 Represent the SISO system with the following transfeT func-
tion using 8tate-space 

Y(z) z + 0.3 
U(z) z2 - 0.6z- 0.16 · 

Problem 8.3 The following open-loop continuous-time transfer function 
represents a second-ordeT 8ystem that is to be controlled U8ing a digital 
computer with ZOH. 

1 
G(s) = (s + 1)(s + 10) · 

Choose a suitable 8ampling interval T and design a digital PID contmlleT 
that ensures that the settling time t 8 :S 1sec, damping ratio ~ 2: 0.5 and 
there is zem steady state ermr to a step input. 

Problem 8.4 A unit feedback digital control system at a sampling inteTval 
of 0.058ec. If the plant transfer function is given by 

z+0.8 
G(z) = (z- 1)(z- 0.8) · 

Design the controlleT D(s) using root locus methods so that the closed-loop 
system satisfies the following time domain specification: 

settling time :::; 0.4sec 
damping ratio 2: 0. 7 

steady state ermr =zero (step input). 

Problem 8.5 Find the time function y(kT) corresponding to the following 
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closed form z-transforms Y{z): 

(a) 

{b) 

(c) 

Y(z)=~ 
z 2 -1 

Y(z) = 2z 
z 2 - 0.5z - 0.5 

Y(z) = 0.522z2 + 0.36lz- 0.203 
z3- 2.347z2 + 1.797z- 0.449 

For each of these, use the following methods: 
(i) Inverse transform method 
{ii) Partial fraction expansion and use of z-transform table 
{iii) Power ser·ies expansion 
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Problem 8.6 Suppose that the following continuous-time lead compensator 

D(s) = lO(s + 1) 
s + 10 

is to be used in controlling the plant 

G(s) = 20 
s(s + l)(s + 10) · 

If this system is to be implemented using a digital computer at a sampling 
interval O.lsec, determine the transfer function D(z) of the controller using: 

(a) Pole-zero matching method 
{b) Tustin's conversion method 
{c) Bilinear transformation method 

Problem 8. 7 (a) Comp1de the poles and zeros of the discrete-time sys-
tems that result from discretizing the continuous-time system with transfer 
function 

G s = 10(s2 +0.2s+2) 
() (s 2 +0.5s+l)(s+10)' 

for sampling intervals ranging from Ts = lsec to T8 = O.Olsec. 
(b) Create a root locus plot showing the evolution of the poles and zeros 

computed in part (a) as a function of T8 • 

{c) Repeat parts (a) and (b) for 

G(s) = (s + 0.1 + 2i)(s + 0.1- 2i) . 
(s + 0.1 + i)(s + 0.1- i)(s + 0.1 + 0.5i)(s + 0.1- 0.5i) 

{d) Repeat parts (a), {b), and (c) for different discretization methods. 
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Problem 8.8 (a) Transf01m 

G _ (z + 0.3)(z- 0.3) 
(z)- (z- 0.1)(z- 0.5 + 0.5i)(z- 0.5- 0.5i) 

into a continuous-time equivalent system by means of ZOH method of sam-
pling intervals ranging fr-om T8 = 0.01sec toTs = 1sec. 

{b) Determine the poles and zeros of the resulting continuous-time sys-
tems. 

(c) Plot the root locus for each of the continuous-time systems. 

Problem 8. 9 The z-tmnsform of a discrete-time filter h(k) at a 1Hz sam-
ple rate is 

H z = 1 + (1/2)z-1 
( ) [1- (1/2)z-1][1 + (1/2)z-1]' 

(a) Letu(k) andy(k) be the discrete input and output ofthisfilter. Find 
a difference equation relating u( k) and y( k). 

(b) Find the naturalfTequency and the damping coefficient of the filter's 
poles. 

(c) Is the filter stable? 

Problem 8.10 Use the Z-transform to solve the difference equation 

where 

y(k)- 3y(k- 1) + 2y(k- 2) = 2u(k- 1)- 2u(k- 2) 

u(k)=k, k::O:O 

= 0, k < 0 

y(k) = 0, k > 0. 

Problem 8.11 A unity feedback system has an open-loop transfer function 
given by 

G(s) _ 250 
- s[(s/10) + 1]' 

The following lag compensator added in series with the plant yields a phase 
margin of 50°, 

Dc(s) = (s/1.25) + 1. 
50s+ 1 

(a) Using the matched pole-zero approximation, determine an equivalent 
digital realization of this compensator. 
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(b) The following transfer function is a lead network designed to add 
about 60° of phase at w1 = 3 radjsec, 

H(s)- s + 1 
- O.ls + 1· 

Assume a sampling period of T = 0.25 sec, and compute and plot in the 
z-plane the pole and zero locations of the digital implementations of H(s) 
obtained using (1) Tustin's method and (2) pole-zero mapping. For each 
case, compute the amount of phase lead provided by the network at z1 = 
ejw1T. 

(c) Using log-scale for the frequency range w = 0.1 tow = 100 radjsec, 
plot the magnitude Bode plots for each of the equivalent digital systems 
found in part (a), and compare with H(s). (hint: Magnitude Bode plots are 
given by IH(z)i = IH(ejwT)I. 

Problem 8.12 (a) The following transfer function is a lag network de-
signed to introduce a gain attenuation of 10 (-20dB) at w = 3 radjsec, 

lOs+ 1 
H ( s) = lOOs + 1 . 

Assume a sampling period of T = 0.25 sec, and compute and plot in the 
z-plane the pole and zero locations of the digital implementations of H(s) 
obtained using (1) Tustin's method and (2) pole-zero mapping. For each 
case, compute the amount of gain attenuation provided by the network at 
Zl = ejwT 

(b) For each of the equivalent digital systems in part (a), plot the Bode 
magnitude curves over the frequency range w = 0.01 to lOradf sec. 

Problem 8.13 Write a computer program to compute <I> and r from A, 
B, and the sample period T. Use the program to compute <I> and r when 

(a) 

[ -1 0 ] 
A= 0 -2 ' B = [i]' T = 0.2sec. 

(b) 

A= [ ~3 ~2], B = [~]' T = 0.2sec. 

Problem 8.14 Consider the following discrete-time system in state-space 
form: 

[ xl(k + 1)] = [0 -1] [x1(k)] + [ 0] u(k). 
X2(k + 1) 0 -1 X2(k) lQ 

Use state feedback to relocate all of the system's poles to 0.5. 
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Problem 8.15 The characteristic equation of a sampled system is 

z2 + (K- 1.5)z + 0.5 = 0. 

Find the range of K so that the system is stable. (Answer: 0 < K < 3} 

Problem 8.16 A unit ramp r(t) = t, t > 0, is used as an input to a 
pmcess where 

1 
G(s) = (s + 1)' 

as shown in the diagram below. 

r(t) --~/~y(t) 
Sampling System 

Determine the output y(kT) for the first four sampling instants. 

Problem 8.17 A closed-loop system has a hold circuit, as shown in Prob-
lem 8.16. Determine G(z) when T = 1 sec and 

2 
Gp(s)=s+2' 

Problem 8.18 Determine which of the following digital transfer functions 
are physically realizable. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Gc(z) = 10(1 + 0.2z- 1 + 0.5z-2 ) 

· z- 1 + z-2 + 1.5z-3 

1 5 -1 -2 
G() .z -z 

c z = · 1 + z- 1 + 2z-2 

G (z)- z+l.5 
c - z3 + z2 + z + 1 

G ( ) = z- 1 + 2z- 2 + 0.5z- 3 
c z 1 2 z- +z-

Gc(z) = 0.1z + 1 + z-1 

Gc(z) = z- 1 + z-2 

Problem 8.19 Consider the digital control system 

x[(k + 1)T] = Ax(kT) + Bu(kT) 



Digita.l Control Systems 667 

where 

[ 0 -1] 
A= -1-1 ' B= [n. 

The state feedback control is described by u(kT) = -Kx(kT), where 

Find the values of k1 and k2 so that the mots of the characteristic equation 
of the closed-loop system are at 0.5 and 0. 'l. 
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Chapter 9 

Advanced Control Systems 

9.1 Introduction 
In this chapter advanced topics and issues involved in the design and 

analysis of control systems are addressed. In particular, the subjects of 
discrete-time estimation (both state-space and information space), optimal 
stochastic control, and nonlinear control systems are presented. Adaptive 
control systems and robust control are briefly introduced. 

A multisensor system may employ a range of different sensors, with dif-
ferent characteristics, to obtain information about an environment. The 
diverse and sometimes conflicting information obtained from multiple sen-
sors gives rise to the problem of how the information can be combined in 
a consistent ancl coherent manner. This is the data fusion problem. Mul-
tisensor fusion is the process by which information from a multitude of 
sensors is combined to yield a coherent description of the system under 
observation. All data fusion problems involve an estimation process. An 
estimator is a decision rule that takes as an argument a sequence of observa-
tions and computes a value for the parameter or state of interest. General 
recursive estimation is presented and, in particular, the Kalman filter is 
discussed. A Bayesian approach to probabilistic information fusion is out-
lined and the notion and measures of information are defined. This leads to 
the derivation of the algebraic equivalent of the Kalman filter, the (linear) 
Information filter. State estimation for systems with nonlinearities is con-
sidered and the extended Kalman filter treated. Linear information space is 
then extended to nonlinear information space by deriving the extended In-
formation filter. This filter forms the basis of decentralized estimation and 
control methods for nonlinear systems. The estimation techniques are then 
extended to LQG stochastic control problems including systems involving 
nonlinearities, that is, the nonlinear stochastic control systems. 

In most of the work in the previous eight chapters it has been assumed 
that the dynamics of systems to be controlled can be described completely 
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by a set of linear differential equations and that the principle of superposi-
tion holds. Such systems are known as linear dynamic systems. However, 
in most applications, these assumptions are not valid, and the systems are 
termed nonlinear dynamic systems. The nonlinearity of dynamic systems 
can be inherent or deliberately added to improve the control action. This 
chapter addresses the whole concept of nonlinear systems, their analysis 
and control design. 

9.2 State-Space Estimation 

In this section, the principles and concepts of estimation are introduced. 
An estimator is a decision rule that takes as an argument a sequence of 
observations and computes a value for the paramE_lter or state of interest. 
The Kalman filter is a recursive linear estimator Lhat successively calculates 
a minimum variance estimate for a state that evolves over time, on the basis 
of periodic observations that are linearly related to this state. The Kalman 
filter estimator minimizes the mean squared estimation error and is optimal 
with respect to a variety of important criteria under specific assumptions 
about process and observation noise. The development of linear estimators 
can be extended to the problem of estimation for nonlinear systems. The 
Kalman filter has found extensive applications in such fields as aerospace 
navigation, robotics and process control. 

9.2.1 System Description 

A very specific notation is adopted to describe systems throughout this 
chapter [3]. The state of nature is described by an n-dimensional vector 
x=[x1 , x2, ... , Xn]T. Measurements or observations are made of the state of 
x. These are described by an m-dimensional observation vector z. 

A linear discrete-time system is described as follows: 

x(k) = F(k)x(k- 1) + B(k)u(k- 1) + w(k- 1), (9.1) 

where x(k) is the state of interest at time k, F(k) is the state-transition ma-
trix from Lime (k-1) to k, while u(k) and B(k) arc the input control vector 
and matrix, respectively. The vector, w(k) ""N(O, Q(k)), is the associated 
process noise modeled as an uncorrelated, zero mean, white sequence with 
process noise covariance, 
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The system is observed according to the linear discrete equation 

z(k) = H(k)x(k) + v(k), (9.2) 

where z(k) is the vector of observations made at time k. H(k) is the obser-
vation matrix or model and v(k)"' N(O, R(k)) is the associated observation 
noise madded as an uncorrelated white sequence with measurement noise 
covariance, 

It is assumed that the process and observation noises are uncorrelated, i.e., 

E[v(i)wT(j)] = 0. 

The notation due to Barshalom [3] is used to denote the vector of esti-
mates of the c;tates x(.j) at time i given information up to and including 
time j by 

x(i I j) = E [x(i) I z(l), · · · z(j)]. 

This is the conditional mean, the minimum mean square error estimate. 
This estima t.e has a corresponding variance given by 

P(i I j) = E [<x(i)- x(i I j)) (x(i)- x(i I j))T I z(l), ... z(j)] . 

9.2.2 Kalman Filter Algorithm 

A great deal has been written about the Kalman filter and estimation 
theory in general [3], [4], [13]. An outline of the Kalman filter algorithm 
is presented here without derivation. Figure 9.1 summarizes its main func-
tional stages. For a system described by Equation 9.1 and being observed 
according to Equation 9.2, the Kalman filter provides a recursive estimate 
x(k I k) for the state x(k) at time k, given all information up to time k 
in terms of the predicted state x(k 1 k- 1) and the new orxservation z(k). 
The one-step-ahead prediction, x(k I k- 1), is the estimate of the state at 
a time k given only information up to time (k - 1). The Kalman filter 
algorithm can be summarized in two stages: 
Prediction 

x(k 1 k- 1) = F(k)x(k- 1 1 k- 1) + B(k)u(k) (9.3) 

P(k I k- 1) = F(k)P(k- 1 I k- 1)FT(k) + Q(k). (9.1) 

Estimation 

x(k 1 k) = [1- W(k)H(k)] x(k 1 k- 1) + W(k)z(k) (9.5) 

P(h: I k) = P(k I k- 1)- W(k)S(k)WT(k), (9.6) 
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INITIALIZE 

PREDICTION 

OBSERVATION 

ESTIMATION 

FIGURE 9.1 
The Kalman Filter Algorithm 

where W(k) and S(k) known as the gain and innovation covariance matri-
ces, respectively, are given by 

(9.7) 

S(k) = H(k)P(k I k- l)HT (k) + R(k). (9.8) 

The matrix 1 represents the identity matrix. Prom Equation 9.5, the 
Kalman filter state estimate can be interpreted as a liuear weighted sum of 
the state prediction and observation. The weights in this averaging process 
are {1- W(k)H(k)} as8ociated with the prediction and W(k) associated 
with the observation. The values of the weights depend on the balance of 
confidence in prediction and observation as specified by the process and 
observation noise covariances. 
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9.3 The Information Filter 

The Information filter is essentially a Kalman filter expressed in terms 
of measures of information about the parameters (states) of interest rather 
than direct state estimates and their associated covariances [15]. This filter 
has also been called the inverse covariance form of the Kalman filter [4], 
[13]. In this section, the contextual meaning of information is explained 
and the Information filter is derived. 

9.3.1 Information Space 

Bayesian Theory 
The probabilistic information contained in z about x is described by the 

probability distribution function, p(zjx), known as the likelihood function. 
Such information is considered objective because it is based on observations. 
The likelihood function contains all the relevant information from the ob-
servation z required in order to make inferences about the true state x. 
This leads to the formulation of the likelihood principle, which states that 
all that is known about the unknown state is what is obtained through ex-
perimentation. Thus, the likelihood function contains all the information 
needed to construct an estimate for x. However, the likelihood function 
does not give the complete picture, if, before measurement, information 
about the state x is made available exogenously. Such a priori information 
about the state is encapsulated in the prior distribution function p(x) and 
is regarded as subjective because it is not based on any observed data. How 
such prior information and the likelihood information interact to provide a 
posteriori (combined prior and observed) information, is solved by Bayes 
theorem, which gives the posterior conditional distribution of x given z, 

p(x,z) = p(xjz)p(z) 

= p(zjx)p(x) 

, ( I ) _ p(zjx)p(x) 
<r} p x z - p(z) . 

where p(z) is the marginal distribution. 

(9.9) 

To reduce uncertainty several measurements can be taken over time be-
fore constructing the posterior. The set of all observations up to time k is 
defined as 

zk ~ {z(l),z(2), ... ,z(k)}. 

The corresponding likelihood function is given by 

Ak(x) ~ p(Zkjx). 

(9.10) 

(9.11) 
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This is a measure of how "likely" a parameter value x is, given that all 
the observations in zk are made. Thus, the likelihood function serves as a 
measure of evidence from data. The posterior distribution pf x, given the 
set of observations zk, is now computed as 

( lzk) = p(Zkjx)p(x) 
p X p(Zk) 0 

(9.12) 

It can also be computed recursively after each observation z(k) as follows: 

( l
zk) = p(z(k)jx)p(xjzk-l) 

px p(z(k)jzk-l) . (9.13) 

In this recursive form there is no need to store all the observations. Only 
the current observation z(k) at step k is considered. This recursive defini-
tion has reduced memory requirements and hence it is the most commonly 
implemented form of Bayes theorem. 

Measures of Information 
The term information·is employed in the Fisher sense, that is, a measure 

of the amount of information about a random state x present in the set of 
observations Zk, up to time k. The score function, sk(x), is defined as the 
gradient of the log-likelihood function, . 

6 k Vxp(Zk,x) 
sk(x)=Vxlnp(Z ,x)= p(Zk,x) · (9.14) 

By considering sk(x) as a random variable, its mean is obtained from 

!Vxp(Zk,x) ( k 
E[sk(x)] = p(Zk,x) p Z ,x)dz 

= Vx J p(Zk,x)dz = 0. 

The Fisher information matrix J(k) is then defined as the covariance of 
the score function, 

(9.15) 

Expressing this result as the negative expectation of the Hessian of the 
log-likelihood gives 

(9.16) 

For a non-random state x the expression of the Fisher information matrix 
becomes 

(9.17) 
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The notion of Fisher information is useful in estimation and control. It 
is consistent with information in the sense of the CrameT-Rao loweT bound 
(CRLB) [4]. According to the CRLB, the mean squared error correspond-
ing to the estimator of a parameter cannot be smaller than a certain quan-
tity related to the likelihood function. Thus, the CRLB bounds the mean 
squared error vector of any unbiased estimator x(k I k) for a state vector 
x(k) modeled as random. 

(9.18) 

In this way, the covariance matrix of an unbiased estimator is bounded from 
below. It follows from Equation 9.18 that the CRLB is the inverse of the 
Fisher information matrix, ,J(k). This is a very important relationship. A 
necessary condition for an estimator to be consistent in the mean square 
sense is thai there must be an increasing amount of information (in the 
sense of Fisher) about t.he parameter in the measurements, i.e., the Fisher 
information has to tend to infinity as k ---+ oo. The CRLB then converges 
to zero as k ---+ oo and thus the variance can also converge to zero. Fur-
thermore, if an estimator's variance is equal to the CRLB, then t:mch an 
estimator is called efficient. 

Consider the expression for the Fisher information matrix in Equations 
9.15 or 9.16. In the particular case where the likelihood function, Ak(x), 
is Gaussian, it can be shown that the Fisher information matrix, ,J(k), is 
equal to the inverse of the covariance matrix P(k I k), that is, the CRLB is 
the covariance matrix. This is clone by considering the probability distribu-
tion function of a Gaussian random vector x(k) whose mean and associated 
covariance matrix are x(k I k) and P(k I k), respectively. In particular, 

p(x(k)IZk) N(x(k),x(k I k),P(k I k)) 

6 ± exp { _ [x(k)- x(k I k)f p-l~k 1 k) [x(k)- x(k 1 k)J}, 

where A= Jdet(2nP(k I k)). 
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Substituting this distribution into Equation 9.16 leads to 

J(k) = -E [vxv;znp(x(k)IZk)] 

_ [ r { [x(k)-x(k 1 k)rP- 1 (k 1 k)[x(k)-x(k 1 k)] · }] - E V x V x 2 + ln A 

_ [ r ([x(k)-x(k 1 k)rP- 1 (k 1 k)[x(k)-x(k 1 k)] )] 
-E VxVx 2 

= E [P- 1 (k I k) { [x(k)- x(k I k)J [x(k)- x(k I k)f} p-1 (k I k)) 

= p-l(k I k)P(k I k)P- 1 (k I k) 
= p-1(k I k) 
= (CRLB)- 1 • 

(9.19) 

(9.20) 

Thus, assuming Gaussian noise and minimum mean squared error estima-
tion, the Fisher information matrix is equal to the inverse of the covariance 
matrix. 

This information matrix is central to the filtering techniques employed 
in this chapter. Although the filter constructed from this information space 
is algebraically equivalent to the Kalman filter, it has been shown to have 
advantages over the Kalman filter in multisensor data fusion applications. 
These include reduced computation, algorithmic simplicity, and easy initial-
ization. In particular, these attributes make the Information filter easier to 
decouple, decentralize, and distribute. These are important filter charac-
teristics in multisensor data fusion systems. 

9.3.2 Information Filter Derivation 

The two key information-analytic variables are the information matrix 
and information state vector. The information matrix has already been 
derived above as the inverse of the covariance matrix, 

Y(i I j) ~ p-l(i I j). (9.21) 

The information state vector is a product of the inverse of the covariance 
matrix (information matrix) and the state estimate, 

:Y(i I i) ~ p-1 (i I i)x(i I i) 
Y(i jj)x(i jj) (9.22) 

The variables, Y(i I j) and y(i I j), form the basis of the information space 
ideas that are central to the material presented in this chapter. 
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The Information filter is derived from the Kalman filter algorithm by 
post-multiplying the term {1- W(k)H(k)} from Equation 9.5, by the term 
{P(k I k- 1)P-1(k I k- 1)} (i.e., post-multiplication by the identity ma-
trix 1), 

1 W(k)H(k) = [P(k I k- 1)- W(k)H(k)P(k I k- 1)] p-l(k I k- 1) 

= [P(k I k- 1) W(k)S(k)S- 1(k)H(k)P(k I k- 1)] X 

p-1 (k 1 k- 1) 
= [P(k I k- 1)- W(k)S(k)WT(k)] p-l(k I k- 1) 
= P(k I k)P- 1 (k I k- 1). (9.23) 

Substituting the expression of the innovation covariance S(k), given in 
Equation 9.8, into the expression of the filter gain matrix W(k), from 
Equation 9. 7 gives 

w(k) = P(k 1 k- 1)HT(k)[H(k)P(k 1 k- 1)HT(k) + R(k)r1 

B W(k)[H(k)P(k I k- 1)HT(k) + R(k)] = P(k I k- 1)HT(k) 

<(=? W(k)R(k) = [1- W(k)H(k)]P(k I k- 1)HT(k) 

<(=? W(k) = [1- W(k)H(k)]P(k I k 1)HT(k)R- 1 (k). (9.24) 

Substituting Equation 9.23 into Equation 9.24 gives 

(9.25) 

Substituting Equations 9.2:1 and 9.25 into Equation 9.5 and pre-multiplying 
through by p-1(k I k) gives the update equation for the information state 
vector as 

p- 1 (k 1 k)x(k 1 k) = p- 1 (k 1 k- l)x(k 1 k- 1) + Hr(k)R- 1 (k)z(k), 

or 

y(k I k) = y(k I k- 1) + HT(k)R- 1 (k)z(k). (9.26) 

A similar expression can be found for the information matrix associated 
with this eRtimate. From Equations 9.6, 9.7 and 9.23 it follows that 

P(k I k) = [1- W(k)H(k)] P(k I k- 1)[1- W(k)H(k)]T 

+W(k)R(k)WT(k). (9.27) 

Substituting in Equations 9.23 and 9.25 gives 

P(k 1 k) = [P(k 1 k)P- 1(k 1 k- 1)J P(k, k- 1) [P(k 1 k)P- 1 (k 1 k -l)r 

+ [P(k 1 k)HT(k)R- 1 (k)J R(k)[P(k 1 k)HT(k)R- 1 (k)r. (9.28) 
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Pre- and post-multiplying by p-1 (k I k) then simplifying, gives the infor-
mation matrix update equation as 

p-l(k I k) = p-l(k I k- 1) + HT(k)R-1 (k)H(k) (9.29) 

or 

Y(k I k) = Y(k I k- 1) + HT(k)R-1 (k)H(k). (9.30) 

The information state contribution i(k) from an observation z(k), and its 
associated information matrix I(k) are defined, respectively, as follows: 

(9.31) 

(9.32) 

The information propagation coefficient L(k I k- 1), which is independent 
of the observations made, is given by the expression 

L(k I k- 1) = Y(k I k- 1)F(k)Y-1(k- 1 I k- 1). (9.33) 

With these information quantities well defined, the linear Kalman filter 
can now be written in terms of the information state vector and the infor-
mation matrix. 

Prediction 

y(k I k- 1) = L(k I k -1)y(k- 1 I k- 1) (9.34) 

Y(k 1 k- 1) = [F(k)Y-1(k- 1 1 k- 1)FT(k) + Q(k)r 1 . (9.35) 

Estimation 

y(k 1 k) = y(k 1 k- 1) + i(k) (9.36) 

Y(k I k) = Y(k I k -1) +I(k). (9.37) 

This is the information form of the Kalman filter [15]. Despite its poten-
tial applications, it is not widely used and it is thinly covered in literature. 
Barshalom [4] and Maybeck [13] briefly discuss the idea of information es-
timation, but do not explicitly derive the algorithm in terms of information 
as done above, nor do they use it as a principal filtering method. 
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9.3.3 Filter Characteristics 

By comparing the implementation requirements and performance of the 
Kalman and Information filters, a number of attractive features of the latter 
are identified: 

• The information estimation Equations 9.36 and 9.37 are computation-
ally simpler than the state estimation Equations 9.5 and 9.6. This 
can be exploited in partitioning these equations for decentralized mul-
tisensor estimation. 

• Although the information prediction Equations 9.34 and 9.35 are more 
complex than Equations 9.3 and 9.4, prediction depends on a propa-
gation coefficient that is independent of the observations. It is thus 
again easy to decouple and decentralize. 

• There are no gain or innovation covariance matrices and the max-
imum dimension of a matrix to be inverted is the state dimension. 
In multisensor systems the state dimension is generally smaller than 
the observation dimension, hence it is preferable to employ the In-
formation filter and invert smaller information matrices than use the 
Kalman filter and invert larger innovation covariance matrices. 

• Initializing the Information filter is much easier than for the Kalman 
filter. This is because; information estimates (matrix and state) arc; 
easily initialized to zero information. However, in order to imple-
ment the Information filter, a start-up procedure is required where 
the information matrix is set with small non-zero diagonal elements 
to make it invertible. 

These characteristics are useful in the development of decentralized data 
fusion and control systems. Consequently, this chapter employs information 
space estimation as tho principal filtering technique. 

9.3.4 An Example of Linear Estimation 

To compare the Kalman and the Information filter and illustrate the 
issues discuc;sed above, the following example of a linear estimation problem 
is considered. Consider two targets moving with two different but constant 
velocities, v1 and 'V2 . The state vector describing their true positions and 
velocities can be represented as follows: 

[vlk1 v2k 
v1 · 
V2 

(9.38) 
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The objective is to estimate the entire state vector x(k) in Equation 9.38 
after obtaining observations of the two target positions, x 1(k) and x 2 (k). 

The discrete-time state equation with sampling interval ~Tis given by 

x(k) = F(k)x(k- 1) + w(k- 1), (9.39) 

where F(k) is the state-transition matrix. This matrix is obtained by the 
series method (discussed in Chapter 7) as follows: 

F(k) = eAt:.T >'::j 1 + ~TA 

[
1 0 ~T 0 l 
0 1 0 ~T 

= 0 0 1 0 , 
0 0 0 1 

where 1 is an identity matrix and A is given by 

[
0 0 1 0] 0001 

A= 0000 . 

0000 

Since only linear measurements of the two target positions are taken, the 
observation matrix is given by 

[ 1000] H(k) = 0 1 0 0 . 

In order to complete the construction of models, the measurement error 
covariance matrix R(k) and the process noise Q(k) are then obtained as 
follows: 

R( k) = [ a~eas_noise 2 0 ] , 
0 a meas_noise 

Q(k) = [ 

a;os_noise 0 0 0 l 
0 a~os_noise 0 0 
0 0 a;eLnotse 0 
0 0 0 a;eLnoise 

The terms a pos_noise and a veLnoise represent the system modeling errors 
in target position and velocity, respectively, while a meas_noise represents 
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FIGURE 9.2 
Performance of the Kalman and Information Filters 

the error in measuring a target position. The corresponding process and 
measurement noise vectors are defined and generated as follows: 

[ 
Jrand numJ :S 20" pos.noise l 

w(k) = Jrand numJ:::; 20"pos_noise ' 

Jrand numJ :S 20"veLnoise 

Jrand numJ :S 20"vcLnoisc 

v(k) = [Jr:and numJ :S 20"meas_noise]. 
Jrand nurnJ :::; 20"meas_n(J'lSe 

These system modeling matrices and vectors are then used in the algo-
rithms of the Kalman and Information filters to carry out estimation. In 
both cases the simulations are implemented using the same models with 
process and observation noises generated by the same random generators. 
The .results are discussed in the next section. 
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Estimation Error for the Kalman and Information Filters 

9.3.5 Comparison of the Kalman and Information Filters 

The Kalman and Information filters are compared by simulating the con-
stant velocity system described above. In order to study and compare the 
performance of the filters, estimation of the same state is considered for the 
two filters; the position of the first target, x 1 (k). Figure 9.2 compares the 
target's true position, predicted position, estimated position, and observed 
position for both the Kalman and Information filters. 

The curves depicting the same variables are identical and indistinguish-
able for the two filters. They lie on top of each other. This illustrates the 
algebraic equivalence of the two filters. From Figure 9.2 it can be observed, 
for both filters, that the state estimate is always well placed between the 
observation and state prediction. This means that there is balanced confi-
dence in observations and predictions. Since, as the time k goes to infinity, 
the process noise variance Q(k) governs the confidence in predictions and 
the observation noise variance R(k) governs the confidence in observations, 
the results are an indication that the noise variances were well chosen. 
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Innovations for the Kalman and Information Filters 

Figure 9.3 shows the state estimation errors for both the Kalman and 
Information filters, while the innovations are similarly shown in Figure 9.4. 
The estimation errors and the innovations are identical for the two filters, 
again demonstrating the algebraic equivalence of the two filters. By in-
spection and computing the sequence mean, the innovations are shown to 
be zero mean with variance S(k). Practically, it means the noise level in 
the filter is of the same order as the true system noise. There is no vis-
ible correlation of the innovations sequences. This implies that there are 
no significant higher-order unmodcled dynamics nor excessive observation 
noise-to-process ratio. The innovations also satisfy the 95% confidence rule. 
This implies that the filters are consistent and well-matched. 

Since the curves in Figures 9.2, 9.3, and 9.4 look indistinguishable for 
the two filters, it is prudent to plot parameter differences between the fil-
ters to confirm the algebraic equivalence. Figure 9.5 shows the difference 
between the state estimates for the filters. The difference is very small (lies 
within w- 13 %) and hence, attributable to numerical and computational 



684 Design and Analysis of Control Systems 

c: 1014 
~ 1.~~------.----,----,----.----.----.----.----,----, 
Ill 
E 
~ w 
c: 
0 
:; 
E 
.E 0. c: 
oil 
c: 
Ill 
E 0 
~ 
c: 
Q) l-0. 
Q) 
.c ... g 
w -1 

- 1 ·~--~5--~1~0--~1~5--~2~0~-2~5~~30~~~--L---L-~50 

Time in [s] 

FIGURE 9.5 
The Difference between Kalman and Information Filters' State 
Estimates 

errors such as truncation and rounding off errors. Thus, the Kalman and 
Information filters are demonstrably equivalent. This confirms the alge-
braic equivalence, which is mathematically proven and established in the 
derivation of the Information filter from the Kalman filter. 

9.4 The Extended Kalman Filter (EKF) 
In almost all real data fusion problems, the state or environment of in-

terest does not evolve linearly. Consequently, simple linear models will not 
be adequate to describe the system. Furthermore, the sensor observations 
may not depend linearly on the states that describe the environment. A 
popular approach to solve nonlinear estimation problems has been to use 
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the extended Kalman filter (EKF) [3], [15]. This is a linear estimator for 
a nonlinear system obtained by l'ineaTization of the nonlinear state and ob-
servations equations. For any nonlinear system, the EKF is the best linear 
unbiased estimator with respect to minimum mean squared error criteria. 

The EKF is conceptually simple and its derivation follows from argu-
ments of linearization and the Kalman filter algorithm. The difficulty arises 
in implementation. It can be made to work welL but may perform badly or 
even become unstable with diverging estimates. This is most often due to 
lack of careful modeling of sensors and environment. Failure to understand 
the limitations of the algorithm exacerbates the problem. 

9.4.1 Nonlinear State-Space 

The system of interest is described by a nonlinear discrete-time staLe 
transition equation in the form 

x(k) = f (x(k- 1), u(k- 1), (k- 1)) + w(k), (9.40) 

where x(k- 1) is the state vector etnd u(k- 1) is a known input vector, 
both at time (k -1). The vectors x(k) and w(k) represent the state vector 
and some additive process noise vector, respectively, both at time-step k. 
The nonlinear function f(-, ·, k) is the nonlinear sLate transition function 
mapping the previous state and current control input to the current state. It 
is assumed that observations of the state of this system are made according 
to a nonlinear observation equation of the form 

z(k) = h (x(k), k) + v(k), (9.41) 

where z(k) is the observation made at time k, x(k) is the state at time k, 
v(k) is some additive observation noise, and h(·, k) is a nonlinear observa-
tion model mapping current state to observations. 

It is assumed that both noise vectors v(k) and w(k) are linearly additive 
Gaussian, temporally uncorrelatecl with zero mean, which means 

E[w(k)] = E[v(k)] = 0, lfk, 

with the corresponding covariances being given by 

E[v(i)vT(.j)] = DijR(i). 

It is assumed that process and observation noises arc uncorrelated, i.e., 

E[w(i)vT(j)] = 0, lfi,j. 
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9.4.2 EKF Derivation 

The derivation of the EKF follows from that of the linear Kalman filter, 
by linearizing state and observation models using Taylor's series expansion 
[4], [13]. 

State Prediction 
It is assumed that there exists an estimate at time ( k 1) that is approx-

imately equal to the conditional mean, 

x(k -1 1 k -1):::::; E[x(k -1) 1 zk- 1]. (9A2) 

The objective is to filld a prediction x( k I k - 1) for the state at the next 
time k based only ou the information available up to tinw (k-1). Expanding 
Equation 9AO as a Taylor series about the estimate x(k- 1 I k- 1), the 
following expression is obtained. 

x(k) f(x(k- 1 I k- 1), u(k:- 1), (k- 1)) 

+V'fx(k:) [x(k- 1)- x(k- 1 1 k- 1)] 

+0 ([x(k:- 1) - x(k:- 1 1 k- 1)J2 ) + w(k) (9.43) 

where V'fx(k) is the Jacobian off evaluated at x(k- 1) = x(k- 1 I k- 1). 
Truncating Equation 9.43 at first-order, and taking expectations condi-

tioned on the first ( k: - 1) observations, gives an equation for the state 
prediction. 

x(k 1 k:- 1) = E [x(k) 1 zk-1] 

~ E [f(x(k- 1 1 k- 1) +A+ w(k) 1 zk-1, - 1), (k- !))] 
(where A= V'fx(k) [x(k- 1)- - l I k- 1)]) 

= r(x(k- 1 1 k -- 1), u(k- 1), (k- 1)). (9.44) 

This follows from the assumption that the estimate x(k- 1 I k- 1) is ap-
proximately equal to the conditional mean (Equation 9.42) and that the 
process noise w(k) has zero mean. The state estimate error at a time ·i, 
given all observations up to time j, is defined as 

x(i 1 j) ~ x(i)- x(i 1 j), (9.45) 

and the state covariance is defined as the outer product of this error with 
itself conditioned on the observations made 

(9.16) 

In particular, the prediction error x(k 1 k- 1) can be found by subtract-
ing the true state x( k) given in Equation 9.43 from the prediction given in 
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Equation 9.44 

x(klk-1) 

= x(k)- x(k 1 k- 1) 
= f(x(k- 11 k -1), u(k), k) + vfx(k) [x(k- 1)- x(k- 1 1 k- 1)] 

+0 ([x(k- 1)- x(k- 1 1 k- 1)J 2 ) + w(k) 

-f(X.(k:- 1 1 k- 1), u(k), k) 

~ vfr(k:) [x(k- I)- x(k- 1 1 k- 1)] + w(k) 
= vf~(k)x(k- 1 1 k- 1) + w(k). (9.47) 

The prediction is unbiased when the previous estimate is unbiased and the 
condition that the noise sequences are zero mean and white hold. 

Taking expectations conditioned on the observations made up to time 
(k - 1) of the outer product of the prediction error gives an expression 
for the prediction covariance in terms of the covariance of the previous 
estimate. 

P(k 1 k- 1) ~ E [x(k 1 k:- 1)xr(k 1 k- 1) 1 zk-1] 

~ E [(vfx(k)x(k- 1 I k- 1) + w(k)) A 1 zk- 1] 

(where A (vfx(k)x(k- 1 I k- 1) + w(k)f) 

= V'fx(k)E [x(k -II k -1)xr(k- 11 k -1) 1 zA- 1Jvfd"(k) 

+E [w(k:)wT(k)] 

= V'fx(k)P(k- 1 1 k- 1)vfJ'(k) + Q(k:). (9.48) 

The last two lines follow from the fact that the estimate and true state at 
time (k:- 1) are statistically dependent only on the noise terms v(j) and 
w(j), j :-::.; (k- 1). Hence, by assumption, they are uncorrelated with the 
current process noise w( k). 

Observation Prediction and Innovation 
The next objective is to obtain a predicted observation and its corre-

sponding innovation to be used in updating the predicted state. This is 
achieved by expanding Equation 9.11, describing the observations made, as 
a Taylor series about the state prediction x(k I k- 1). 

z(k:) h (x(k)) + v(k) 

= h (x(k 1 k- 1)) + vhx(k) [x(k 1 k- 1)- x(k)J + 
0 ([x(k: I k- 1)- x(k)J 2 ) + v(k) (9.49) 

where vh,(k:) is the Jacobian of h evaluated at x(k) = x(k I k- 1). Again, 
ignoring second- and higher-order terms and taking expectations condi-
tioned on the first (k:- 1) observations gives an equation for the predicted 
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observation. 

z(klk-1) 

6 E [z(k) 1 zk-1) 

~ E [h(x(k I k -1)) + V'hr,(k) [x(k I k -1) -x(k)] +v(k) I zk- 1) 

h (x(k 1 k- 1)), (9.50) 

where the last two lines follow from the fact that the state prediction error 
and the observation noise both have zero mean. After taking an observation 
z(k), the innovation can be found by subtracting the predicted observation 
as 

v(k) = z(k)- h(x(k I k -1)). (9.51) 

The innovation covariance can now be found from the mean squared error 
in the predicted observation. The error in the predicted observation can 
be approximated by subtracting this prediction from the Taylor's series 
expansion of the observation in Equation 9.49 as 

z(k 1 k- 1) 6 z(k)- z(k I k- 1) 
h (x(k I k- 1)) + Y'hx(k) [x(k I k- 1)- x(k)] 

+0 (lx(k I k- 1)- x(k)J 2 ) + v(k) 

-h (x(k 1 k- 1)) 
~ Y'hx(k) [x(k I k- 1) - x(k)] + v(k). (9.52) 

A clear distinction is made between the "estimated" observation er-
ror z(k I k- 1) and the measured observation error, the innovation, v(k). 
Squaring the expression for the estimated observation error and taking ex-
pectation conditions on the first ( k - 1) measurements gives an equation 
for the innovation covariance. 

S(k) = E [z(k 1 k -l)zr(k 1 k- 1)] 

= E (AAT) 

(where A= (Y'hx(k) [x(k I k- 1)- x(k)] + v(k))) 
= Y'hx(k)P(k I k- 1)\7h~(k) + R(k). (9.53) 

This follows from the fact that the state prediction is dependent only on 
the noise terms v(j) and w(j), j :::; (k- 1). Consequently, by assmnption, 
it is statistically uncorrelated with the current observation noise v( k). 
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Update Equations 
Equipped with the prediction and innovation equations, a linearized es-

timator can be proposed. It gives a state estimate vector x(k 1 k) for the 
state vector x(k), which is described by the nonlinear state transition of 
Equation 9.40, and which is being observed according to the nonlinear ob-
servation Equation 9.41. It is assumed that a prediction x(k I k- 1) for the 
state at time k has been made on the basis of the first ( k - 1) observations 
zk-l according to Equation 9.44. The current observation is z(k). The 
estimator is assumed to be in the form of a linear unbiased average of the 
prediction and innovation so that, 

x(k 1 k) = x(k 1 k- 1) + W(k) [z(k)- h(x(k 1 k- 1))]. (9.54) 

The gain matrix W ( k) is chosen so as to minimize conditional mean squared 
estimation error. This error is equal to the trace of Lhe estimate covariance 
P ( k I k), which itself is simply the expected value of the state error x( k I k) 
squared. 

From Equation 9.54 and the approximate observation error given in 
Equation 9.52, the state error becomes 

x(k 1 k) 
= X.(k I k)- x(k) 
= [x(k I k- 1)- x(k)] + W(k) [h(x(k))- h(x(k I k- 1))] + W(k)v(k) 

Rj [x(k I k- 1)- x(k)]- W(k)Y'hx(k) [x(k I k)- x(k)] W(k)v(k) 

= [1- W(k)Y'hx(k)] x(k I k- 1) + W(k)v(k). (9.55) 

The estimate is unbiased when the prediction is unbiased and the condition 
that the noise sequences are zero mean and white hold. 

Taking the expectation condition on the observations made up to time 
k of the outer product of the state error gives an expression for the state 
covariance in terms of the prediction covariance. 

P(k 1 k) 6 E [x(k 1 k)xr(k 1 k) 1 zk] 
Rj [1- W(k)Y'hx(k)] E [x(k 1 k- l)xT(k 1 k- 1) 1 zk- 1] x 

[1- W(k)Y'hx(k)]T + W(k)E [v(k)vT(k)]WT(k) 

Rj [1- W(k)Y'hx(k)] P(k 1 k- l)[I- W(k)Y'hx(k)r + 
W(k)R(k)WT(k). (9.56) 

The gain matrix W(k) is now chosen to minimize the mean squared esti-
mation error L(k), which is defined as 

L(k) = E[xT(k I k)x(k I k)] = tracc[P(k I k)]. (9.57) 
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Minimization of this error calls for 

fJ!~k) = -2(1- W(k)'Vhx(k))P(k I k- 1)\i'hi(k) + 2W(k)R(k) = 0, 

(9.58) 

which, on simplification and rearrangement, provides an expression for the 
gain matrix as 

w(k) = P(k 1 k- 1)\i'h; (k) [Y'h" (k)P(k 1 k- 1)\i'h; (k) + R(k) rl 
= P(k I k -1)\7hi(k)S- 1 (k). (9.59) 

With this gain matrix, Equation 9.54 becomes the best (minimum mean 
squared error) linear unbiased estimator for the state x( k) under the stated 
conditions. This completes the derivation of the extended Kalman filter. 

9.4.3 Summary of the EKF Algorithm 

Prediction 

x(klk l)=f(x(k-llk-1),u(k-1),(k-1)) (9.60) 

P(k I k- 1) = VC,(k)P(k- 1 I k- 1)Vfx T (k) + Q(k- 1). (9.61) 

Estimation 

x(kl k) = x(k 1 k -1) + W(k) [z(k)- h(x(k 1 k -1))] (9.62) 

P(k I k) = P(k I k -1)- W(k)S(k)WT(k). (9.63) 

The gain and innovation covariance matrices are given by 

W(k) = P(k I k- 1)Vhx T (k)S- 1 (k) (9.64) 

S(k) = Vhx(k)P(k I k -1)Vhx T(k) + R(k). (9.65) 

The Jacobians Vfx(k) and Vhx(k) are typically not constant, being 
functions of both the state and time-step. It is clearly evident that the 
EKF is very similar to the Kalman filter algorithm, with the substitutions 
F --> Vfx(k) and H--> Vhx (k) being made in the equations for the variance 
and gain propagation. 

It is prudent to note a number of problematic issues specific to the EKF. 
Unlike the linear filter, the covarianccs and gain matrix must be computed 
online as estimates and predictions arc made available, and will not, in 
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general, tend to constant values. This significantly increases the amount 
of computation that must be performed online by the algorithm. Also, if 
the nominal (predicted) trajectory is too far away from the true trajectory, 
then the true covariance will be much larger than the estimated covari-
ance and the filter will become poorly matched. This might lead to severe 
filter instabilities. Last, the EKF employs a linearized model that must 
be computed from an approximate knowledge of the state. Unlike the lin-
ear algorithm, this means that the filter must be accurately initialized at 
the start of operation to ensure that the linearized models obtained are 
valid. All these issues must be taken into account to achieve acceptable 
performance for the EKF. 

9.5 The Extended Information Filter (EIF) 

9.5.1 Nonlinear Information Space 

In this section, the linear Information filter is extended to a linearized 
estimation algorithm for nonlinear systems. The general approach is to ap-
ply the principles of the EKF and those of the linear Information filter to 
construct a new estimation method for nonlinear systems. This generates 
a filter that predicts and estimates information about nonlinear state pa-
rameters given nonlinear observations and nonlinear system dynamics. All 
the computation and tracking is in information space. The new filter will 
be termed the extended Information filter (EIF) [15]. In addition to pro-
viding a solution to the nonlinear estimation problem, the EIF also has all 
the advantages of the Information filter and resolves some of the problems 
associated with the EKF. 

In particular, information space allows easy initialization of filter ma-
trices and vectors. Given the importance of accurate initialization when 
using linearized models, this is an extremely desirable characteristic. As 
discussed before, a major drawback of the EKF is excessive computational 
burden. Carrying out the prediction and estimation processes in terms of 
information will significantly reduce this load by simplifying the prediction 
and estimation equations. These equations are then easily partitioned and 
decentralized. It is proposed that estimation for nonlinear systems, in par-
ticular multisensor systems, is best carried out using information variables 
rather than state variables. 
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9.5.2 ElF Derivation 

The derivation of the extended Information filter uses principles from 
both the derivations of the Information filter and the EKF. The ElF can-
not be extrapolated from these two filters in an obvious manner. This is 
because, in the nonlinear case, the function operator h cannot be separated 
from x(k) in the nonlinear observation equation 

z(k) = h (x(k), k) + v(k), (9.66) 

and yet the derivation of the Information filter depends on this separation, 
which is possible in the linear observation equation. · 

The derivation of the ElF proceeds by considering equations from the 
derivation of the EKF algorithm. Post-multiplying {1- W(k)Vhx(k)} 
from Equation 9.55 by the term {P(k I k- 1)P-1 (k I k- 1) }, i.e., post-
multiplication by the identity matrix 1 leads to 

1- W(k)Vhx(k) = [P(k I k- 1)- W(k)Vhx(k)P(k I k- 1)] X 

p-1 (k 1 k- 1) 
= [P(k I k- 1)- W(k){S(k)S-1(k)}Vhx(k) X 

P(k I k- 1)]P-1(k I k- 1) 
= [P(k I k- 1)- W(k)S(k)WT(k)]P- 1 (k I k- 1) 

{:} 1- W(k)Vhx(k) = P(k I k)P- 1 (k I k- 1). (9.67) 

Substituting the expression of the EKF innovation covariance matrix from 
Equation 9.65 in the EKF gain matrix given in Equation 9.64 produces 

W(k) = P(k I k- 1)Vhx T (k)[Vhx(k)P(k I k- 1)Vhx T (k) + R(k)t 1 

<==? W(k)[Vhx(k)P(k I k -1)Vhx T(k) + R(k)] = P(k I k -1)Vhx T(k) 
{:} W(k)R(k) = [1- W(k)Vhx(k)]P(k I k -1)Vhx T(k). 

Now, substituting Equation 9.67 into this expression gives 

W(k) = P(k I k)Vhx T(k)R- 1 (k). (9.68) 

In order to use Equations 9.67 and 9.68 to derive the ElF, the. EKF state 
estimation Equation 9.62 must be expressed in the same form as that for 
the conventional Kalman filter. This is done by adding and subtracting 
the term W(k)Vhx(k)x(k I k- 1) to the left-hand side of Equation 9.62 
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(addition of zero): 

x(k 1 k) 
= X.(k 1 k- 1) + W(k) [z(k)- h(x(k 1 k- 1))] 
= x(k I k- 1)- W(k)Vhx(k)x(k I k- 1) + W(k) [z(k) - h(x(k I k- 1))] 

+W(k)Vhx(k)x(k I k- 1) 
= [1- W(k)Vh~(k)]x(k I k- 1) + W(k) [v(k) + Vhx(k)X.(k 1 k- 1)] 
= [1- W(k)Vhx(k)]x(k I k- 1) + W(k)z'(k), (9.69) 

where z'(k) is the "equivalent" linearized observation vector, 

z'(k) = v(k) + Vhx(k)x(k I k- 1), (9.70) 

and the innovation vector is given by 

v(k) = z(k)- h(X.(k I k- 1)). 

Equation 9.69 is now in a form similar to that of a linear Kalman filter. 
The derivation of the EIF then proceeds by subc;Lituting Equations 9.67 

and 9.68 into Equation 9.69. 

x(k 1 k) 
= [1 W(k)Vhx(k)]x(k I k- 1) + W(k)z'(k) 
= [P(k I k)P-1 (k I k- 1)]x(k I k- 1) + [P(k I k)Vhx T (k)R - 1(k)]z'(k). 

Pre-multiplying both sides by p- 1 (k I k) gives 

p- 1 (k I k)x(k I k) = [P- 1 (k I k)P(k I k)P- 1 (k I k -1)]x(k I k- 1) + 
[P- 1 (k I k)P(k I k)Vh:zT(k)R- 1 (k)]z'(k) 

= p- 1 (k I k -l)x(k I k- 1) + Vhx T(k)R- 1 (k)z'(k) 
B y(k I k) = y(k I k- 1) + i(k). (9.71) 

This is the extended information estimation equation where the information 
contribution from nonlinear observation z(k) is given by 

where z' (k) is the "equivalent" linearized observation given by Equation 
9.70. The vector z'(k) gives an expression of the system observations if the 
nonlinear system is replaced by an equivalent linearized system. It depends 
on the innovation, the state prediction, and the Jacobian evaluated at this 
prediction. 
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To compute the information matrix update, Equations 9.67 and 9.68 are 
substituted into the EKF variance update equation, 

P(k I k) 
= [1- W(k)Vhx(k)]P(k I k- 1)[1- W(k)Vhx(k)]T + W(k)R(k)WT(k) 
= [P(k I k)P-1 (k I k- 1)]P(k I k 1)[P(k I k)P-1 (k I k- 1)]T + 

[P(k I k )Vhx T (k )R -l (k)]R(k)[P(k I k)Vhx T (k )R - 1 (k )(. (9.72) 

Pre- and post-multiplying both sides by p-1 (k I k) gives 

B p-l(k I k) = p-l(k I k -1) + Vhx T(k)R- 1(k) 
{c} Y(k I k) = Y(k I k- 1) + I(k). 

(k) (9.73) 

(9.74) 

This is the linearized information matrix update equation where the af:>so-
ciated matrix contribution is given by 

(9.75) 

To obtain the corresponding prediction equations, consider the EKF 
state and variance prediction equations. Pre-multiplying the state predic-
tion Equation 9.60 by p- 1 ( k I k - 1) and inverting the variance prediction 
Equation 9.61 gives the information vector prediction as 

x(k 1 k- 1) = r (x(k- 1 1 k- 1), u(k- 1), (k- 1)) 
{c} p-l (k 1 k- l)x(k 1 k- 1) = p-1(k 1 k- 1) x 

f (X(k- 1 I k- 1), u(k- 1), (k- 1)) 
By(klk-1)=Y(klk-1) f (x(k-llk-1), -1),(k-1)). 

The linearized information matrix prediction is obtained as follows: 

P(k I k -1) = Vfx(k)P(k- 1 I k- 1)Vfx T(k) + Q(k -1) 

{c} Y(k 1 k -1) = [vrx(k)Y- 1 (k -11 k- 1)Vfx r(k) + Q(k)r 1
. 

This completes the derivation of the EIF; the entire algorithm can be sum-
marized as follows: 

9.5.3 Summary of the ElF Algorithm 

Prediction 

y(k I k- 1) = Y(k I k- 1)f (k, x(k- 11 k- 1), u(k- 1), (k- 1)) (9.76) 

Y(k I k- 1) = [ Y'fx(k)Y- 1(k- 1 I k- 1)Vfx ]' (k) + Q(k)] -l. (9.77) 
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Estimation 

y(k 1 k) = y(k 1 k- 1) + i(k) 

Y(k I k) = Y(k I k- 1) + I(k). 

695 

(9. 78) 

(9.79) 

The information state contribution and its associated information matrix 
are given, respectively, as 

I(k:) = "Yhx T(k)R- 1 (k)V'hx(k) 

i(k) = V'hx T(k)R- 1 (k) [v(k) + Vhx(k)x(k I k- 1)], 
where v(k) is the innovation given by 

v(k) = z(k)- h(x(k I k -1)). 

9.5.4 Filter Characteristics 

This filter has several attractive practical features, in particular: 

(9.80) 

(9.81) 

(9.82) 

• The filter solves, in information space, the linear estimation problem 
for systems with both nonlinear dynamics and observations. In addi-
tion to having all the attributes of the Information filter, it is a more 
practical and general filter. 

• The information estimation Equations 9. 78 and 9. 79 are computa-
tionally simpler than the EKF estimation equations. This makes the 
partitioning of these equations for decentralized systems easy. 

® Although the information prediction Equations 9.76 and D.77 are of 
the same apparent complexity as the EKF ones, they are easier to 
distribute and fuse because of the orthonormality properties of infor-
mation space parameters. 

® Since the EIF is expressed in terms of information matrices and vec-
tors, it is more easily initialized than the EKF. Accurate initialization 
is important where linearized models are employed. 

Some of the drawbacks inherent in the EKF still affect the ElF. These 
include the nontrivial nature of .Jacobian matrix derivation (and computa-
tion) and linearization instability. · 

9.6 Examples of Estimation in Nonlinear Systems 

In order to compare the extended Kalman filter and the extended Infor-
mation filter and illustrate the characteristics discussed above, three esti-
mation problems in nonlinear systems are considered. These examples are 
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chosen so that all possible combinations of nonlinearities in observations 
and nonlinearities in the system evolution are exhausted. 

9.6.1 Nonlinear State Evolution and Linear Observations 

Consider a two-dimensional radar tracking system that tracks a missile 
traveling vertically in an :ry plane with known vertical velocity v and accel-
eration a, such that x(k) = 0, y(k) = v and jj(k) =a. The missile is fired 
vertically, in the positive y-axis direction, from some point on the x-axis. 
The radar is located at the origin of the xy plane such that it measures the 
polar coordinates of the missile, that is, the radial position r(k), and the 
angular displacement from the horizontal B(k) where 

r(k) = Jx2(k) + y 2 (k) and B(k) =arctan[~~~~ J . 

Using the polar measurements, the objective is to estimate the entire 
missile state vector x( k) given by 

[
xl(k)j [r(k)j 

(k) _ x2(k) _ r(k) 
X - X3(k) - B(k) . 

X4(k) iJ(k) 

The equations of motion with respect to the polar coordinates, r(k) and 
B(k), are obtained by taking first and second derivatives. The result can be 
expressed in a nonlinear state vector form as follows: 

x(k) = 

r(k) 

r:(k) 

iJ(k) 

e(k) 

v sin B(k) 

v2 
asinB(k) + r(k) cos2 B(k) 

v 
r(k) cos B(k) 

ar(k)-v2 sinB(k) v2 • 
r 2 (k) cosB(k)- r 2 (k) smB(k) cosB(k) 

Using the definition of the derivative of a generic state vector element Xi ( k) 
leads to 

,· ·(k _ 1) = xi(k)- x.i(k- 1) 
x, t::.T ' 

{=? Xi(k) = Xi(k- 1) + t::.Txi(k- 1). (9.83) 
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The discrete-time nonlinear system model is then obtained by employing 
Equation 9.83 for all elements of the state vector x(k), while using the state 
element derivatives from the vector x( k) (assuming !J.T = 1). 

x(k) 
= f (x(k- 1), (k- 1)) + w(k) 

v 
x3(k- 1) + (k ) cosx3(k- 1) 

X] -1 

ax, (k-1) -v2 sin x3 (k-1) cos X3 (k-1)-v2 sin x3(k-l) cos x3(k-l) 
X4(k- 1) + x,(k-1) 

+w(k). 

The Jacobian of this nonlinear model is given by 

where 

an = 1.0 

a12 = 0.0 

a13 = vcosx3(k- 1) 
a14 = 0.0 

v2 cos2 x3(k- 1) 
azl=- xi(k-1) 

a22 = 1.0 
v2 

a23 = acosx3(k -1)- (k ) sin2x3 (k -1) 
X] -1 

a24 = 0.0 
uc:osx3 (k -1) 

a:n=- xi(k-1) 
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a32 = 0.0 

a34 = 0.0 
[2v2x 1 (k-1)sin2x3(k-1)]- [axl 2 (k-1)cosx3 (k-1)] 

a41 = . a:f(k- 1) 
a42 = 0.0 

. _ -lax1(k -1) sinx3(k- 1) + 2v2 cos2x3(k- 1)1 
a43 - xi(k- 1) 
a44 = 1.0. 

Since the radial position r(k) and the angular displacement 8(7,;) are 
linearly measured by the radar, the observation matrix for the tracking 
system is given by 

[ 1 0 0 01 H(k) = 0 0 1 0 . 

These system modeling matrices and vectors are then used in the algo-
rithms of the EKF and ElF to carry out estimation of the missile state 
vector. The process and observation noises are generated by random num-
ber generators, as has already been explained. The results are discussed 
later. 

9.6.2 Linear State Evolution with Nonlinear Observations 

A system might involve linear c;y::;tem dynamics and nonlinear measure-
ment equations. An example of such a system is a radar station that makes 
measurements of the radial position r( k) and the angular displacement 8( k) 
of an aircraft, from which it is desired to obtain the estimated values of the 
horizontal and vertical positions and velocities of the aircraft. The mo-
tion of the aircraft is such that the horizontal velocity Vx and the vertical 
velocity Vy are constant, which means the aircraft is executing linear mo-
tion. This is a four-dimensional problem involving two positions and two 
velocities. 

As in the previous radar and missile example, the polar coordinates and 
the Cartesian coordinates are related by the eqnations 

and [ :y(k)1 B(k) =arctan :l:(k) . 

The state vector of interest consists of the two positions and the two 
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EKF & EIF: Nonlinear State Evolution with Linear Observations 

velocities such that 

r
x(k)1 rv;x;k1 y(k) _ Vyk 

x(k) - v"' · 
y(k) Vy 

The system models are established as in previous examples. In particular, 

r
1 0 

F(k) = ~ ~ 
0 0 

z(k) = [r(k) B(k) 

6.T 0 1 0 D.T 
1 0 
0 1 

] + v(k) 

= h (x(k), k) + v(k) 
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These system models are then used in the algorithms of the EKF and ElF 
to estimate the state vector of the aircraft's horizontal and vertical positions 
and velocities. The results are also presented and discussed later. 
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State Evolution with Linear Observations 

9.6.3 Both Nonlinear State Evolution and Observations 

A highly nonlinear system has nonlinearities in both system state evolu-
tion and observations. An example of such a system is a wheeled mobile 
robot (WMR) vehicle moving in a plane. The state vector of the vehicle at 
any time instant k is determined by its location and orientation such that 

[
x(k) l x(k) = y(k) , 
¢(k) 

where :c(k) and y(k) denote the WMR positions along the x and y axes 
of the plane, respectively, and ¢( k) is the WMR orientation. Control is 
extended over the WMR vehicle motion through a demanded velocity v(k) 
and direction of travel 'l/;( k), 

[ v(k)] u(k) = VJ(k) . 
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The motion of the vehicle can now be described in terms of the simple 
nonlinear state transition equation, 

x(k) x(k- 1) + I::!.Tv(k) cos [¢(k- 1) + 'lj;(k)] 'Wx(k) 

y(k) y(k- 1) + I::!.Tv(k) sin [¢(k- 1) + 'lj;(k)] 
+ 'Wy ( k) 

¢(k) v(k) 
¢(k- 1) + 6TB sin 'lj;(k) wq,(k) 

where B is the wheel base line, I::!.T is the time in travel between time 
steps, and w(k) = [wx(k) wy(k) wq,(k)]T is the random vector describing 
the noise in the process due to both modeling errors and uncertainty in 
control. It is assumed that Lhe vehicle is equipped with a sensor that can 
measure the range and bearing to a moving beacon with motion described 
by two parameters, B; = [x; y;]T, such that :c; varies linearly with time, 
i.e., x; = 0.5k. Assuming that the beacon is moving in circular motion 
of radius 10 units about the vehicle, then y; is given by the expression 
y; = )100 - x;. The observation equations for the beacon are given by 
the nonlinear measurement model, 

[ 
z,' (k) l 
ze"(k) 

[
V[x;- x(k)]2 + [y;- y(k)]2j + [ur(k)l ' 

arctan[~:=~~~~] - ¢(k) ve(k) 

where the random vector v(k) = [v7 (k) ve(k)r describes the noise in 
the observation process. The system models arc defined and established as 
before. In particular, 

V'fx(k) = r~1 0 

1 

0 

-6Tv(k)sin [</>(k -11 k -1) + '1/J(k)] l 
I::!.Tv(k)cos [</>(k -11 k -1) +'1/J(k)] 

1 

[ 

x(klk- 1)- :1:; 

d 
Y'hx(k) = 

f)(klk- 1)- Yi 
d2 

f)(klk- 1)- y; 
d 

i:(klk- 1)- X; 

d2 

' I 2 2 
where d = v [x;- x(klk- 1)] + [y;- f)(klk- 1)] . 

These system models are then used in the algorithms of the EKF and 
ElF to estimate the WMR vehicle's state vector x(k), that is, estimate the 
location and orientation of the vehicle. The results are also presented and 
discussed in the next section. 
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9.6.4 Comparison of the EKF and EIF 

703 

45 50 

The EKF and EIF are compared in the same way as the linear filters. 
However, the three nonlinear estimation examples, outlined in the sections 
above, are implemented for each filter. These examples were chosen to 
allow exhaustive investigation of nonlinearities in both system evolution 
and observations. In order to study and compare the performance of the 
filters, for each example, estimation of the same state is considered. 

The general filter performance for these examples is shown in Figures 
9.6 and 9.9. As was the case with the linear filters, the state observations, 
predictions, and estimates are identical for the EKF and ElF. The curves 
depicting the same variables are indistinguishable because they lie on top 
of each other. The same equivalence is observed for estimation errors and 
innovations. There are still slight difTerences bc)tween the two filters, at-
tributable to numerical errors. As the number of nonlinearities increases, 
the errors tend to increase. However, even in the worst case, the errors are 
still bounded and inconsequential. 



704 Design and Analysis of Contml Systems 

6 

4 

~ 2 

c I 0 0 I ~ 

V\j > 

I 0 
c 
c 

~ v 
- - Extended Kalman Filter 
-Extended Information Filter 

5 10 15 20 25 30 35 40 45 50 
Time in [s] 

FIGURE 9.10 
Linear State Evolution with Nonlinear Observations 

The nature and trend of the difference between the EKP and ElF state 
·estimates is shown in Figures 9.8 and 9.13. The errors are worse than 
those for linear systems because of the need to compute the Jacobians, 
Vfx(k) and Vhx(k). The Jacobians are not constants; they are functions 
of both time-step and state. As a result the covariances and system models 
must be computed online. This increases the number of computations per-
formed and hence the numerical errors between the two filters are greater. 
The greater the complexity of the nonlinearities, the greater the number 
and complexity of the Jacobians, which leads to more computational costs. 
This tends to produce more numerical and rounding-off errors. In spite of 
these errors, the equivalence of the EKF and ElF is amply demorwtrated 
in the three examples. This confirms the algebraic equivalence, which is 
mathematically proven and established in the derivation of the ElF from 
the EKF and the Information filter. 

In terms of filter performance, both the EKF and ELF filters show unbi-
asedness, consistency, efficiency, and good matching. In all three examples, 
the eitatc estimate is always well placed between the observation ami state 
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Estimation Errors for EKF and ElF: Nonlinear State Evolution 
with Nonlinear Observations 

prediction. This means there is balanced confidence in observations and 
predictions. By inspection and computing the sequence mean, the innova-
tions (Figures 9.7, 9.10 and 9.12) are shown to be zero mean with variance 
S(k). There is no visible correlation of the innovations sequences and they 
satisfy the 95% confidence rule. However, in general, the performance of 
the EKF and ElF is not as good as that of the linear filters. This is be-
cause of the nontrivial nature of the Jacobian matrix computation and the 
general instability inherent in linearized filters. 

9.6.5 Decentralized Estimation 

These estimation techniques that have been developed and discussed form 
the basis of decentralized estimation. The notation and system description 
have been introduced and explained. Estimation theory and its use were 
discussed, in particular, the Kalman filter algorithm was outlined. The 
Information filter was then derived as an algebraic equivalent to the tra-
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ditional Kalman filter. Its attributes were outlined and discussed. The 
extended Kalman filter was then presented as a state-space solution to the 
estimation problem for a system characterized by both nonlinear system 
evolution and nonlinear measurements. The original and novel contribu-
tion of this chapter is the extended Information filter, ElF. This algorithm 
provides an estimation technique in extended information space for nonlin-
ear systems. It was derived from first principles, explained, and appraised. 
It has all the attributes of the linear Information filter and fewer of the 
problems associated with the EKF. The simulated examples of estimation 
in linear and nonlinear systems validated the Information filter and EIF 
algorithms with respect to those of the Kalman filter and EKF. For the 
ElF and EKF, examples involving nonlinearitics in both system evolution 
and observations were considered. The key benefit of information estima-
tion theory is that it makes fully decentralized estimation for multisensor 
systems attainable [15]. 
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9. 7 Optimal Stochastic Control 

This section extends the estimation algorithms to the problem of sensor-
based control by introducing stochastic control ideas. In particular, the 
LQG control problem and its solution are outlined. For systems involving 
nonlinearities, the nonlinear stochastic control problem is discussed. This 
section describes the optimal stochastic control problern and its solution. 
The practical dcc;ign of stochastic controllers for problems described by 
the LQG assumptions, Linear system model, Quadratic cost criterion for 
optimality, and Gaussian white noise inputs are briefly discussed. Problems 
involving nonlinear models are then considered. 
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9. 7.1 Stochastic Control Problem 

Most control problems of interest can be described by the general sys-
tem configuration in Figure 9.14. There is some dynamic system of interest 
whose behavior is to be affected by an applied control input vector u(k) 
in such a way that the controlled state vector x(k) exhibits desirable char-
acteristics. These characteristics are prescribed, in part, as the controlled 
state vector x(k) matching a reference state vector xr(k) as closely and 
quickly as possible. The simplest control problem is in the LQG form and 
hence it is important to understand the meaning of the LQG assumptions. 

• Linear System Model: Linearity is assumed where a linear system 
obeys the principle of superposition and its response is the convolu-
tion of the input with the system impulse response. 

• Quadratic Cost Function: A quadratic: cost criterion for optimality 
is assumed such that the control is optimal in the sense of minimizing 
the expected value of a quadratic performance index associated with 
the control problem. 

• Gaussian Noise Model: White Gaussian noise process corruption 
is assumed. 

Problem Statement 
Let the system of interest be described by the n-dimensional stochastic 

discrete- time difference equation 

x(k) = F(k)x(k- 1) + B(k)u(k- 1) + D(k)w(k), (9.84) 
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where u(k) is the r~dimensional control input to be applied and w(k) is the 
zero mean white Gaussian discrete~ time noise. The objective is to determine 
the control vector u(k) that minimizes the quadratic cost function 

J(N) = E [2:::~ 1 { e'[(k)X(k)er(k) + [u(k)- Ur(k)jTU(k)[u(k)- Ur(k)J} J, 

where er(k) = [x(k)- Xr(k)] and X(k) is an n~by~n real and positive semi~ 
definite cost weighting matrix, reflecting the relative importance of main-
taining individual state component deviations at small values. U(k) is an 
r-by-r real, symmetric, and positive definite cost weighting matrix reflect-
ing the relative importance of maintaining individual control component 
deviations at small values [14]. 

There are several reasons for the use of a quadratic cost function of states 
and control: 

• Quadratics are a good description of many control objectives, such as 
minimizing mean squared error or energy. 

• Inherently, such a function enhances the adequacy of the linear per-
turbation model. 

• This combination of modeling assumptions yields a tractable prob-
lem whose solution is in the form of a readily synthesized, efficiently 
implemented, feedback control law. 

9.7.2 Optimal Stochastic Solution 
In this. subsection, the solution to the LQG control problem outlined 

above is presented. Deterministic methods cannot be used to solve for an 
optimal control vector u(k) from the function J(N) because of the stochas-
tic nature of the problem [14]. The dynamic driving noise term w(k) pre-
vents perfect, ahead-of-time knowledge of where the system will be at time 
(k + 1). There is no single optimal history of states and controls, but an 
entire family of trajectories. Two closely related techniques are employed 
in determining an optimal stochastic control solution [14]. 

• Optimality principle: An optimal policy has the property that for 
any initial states and decision (control law), all remaining decisions 
must constitute an optimal policy with regard to the state that results 
from the first decision. 

• Stochastic dynamic programming: This is a technique of step-
ping backward in time to obtain optimal control. It is dependent on 
the Markov nature of the discrete-time process. 



710 Design and Analysis of Control Systems 

Two further structural properties are essential for the solution to be real-
ized. These are separation and certainty equivalence pTinciples. A control 
problem is said to be separable if its optimal control depends only on an 
estimate x(k I k) of the state x(k) and not at all on the accuracy of the 
estimate. It is also said to be certainty equivalent if, being separable, the 
control is exactly the same as it would be in a related deterministic prob-
lem. The two principles imply that the problem of seeking a linear control 
law for a linear dynamical system with Gaussian measurement noise sub-
ject to a quadratic performance index can be cast in terms of two separate 
problems: 

@ Optimal deterministic control 

e Optimal stochastic estimation 

These Lwo problems can be solved separately to yield an optimal solu-
tion to the combined problem. The optimal stochastic estimation problem 
has been solved in previous sections. The basis of these algorithms is the 
Kalman filter and its algebraic equivalent, the Information filter. Although 
only the information space algorithms are extended to stochastic control 
algorithmi'i in this section, the state-space estimation algorithms can be 
similarly extended. 

The cost minimizing control function is given by 

u(k) = -G(k)[x(k I k)- xr(k)], (9.85) 

where G( k) is the associated optimal deterministic control gain. Its value 
is generated from the solution to the Backward Riccati recursion [14], 

(9.86) 

where K(k) is the n-by-n symmetric matrix satisfying the Backward Riccati 
difference equation [14], 

K(k) = X(k) + FT(k)K(k + l)F(k)- [FT(k)K(k + l)B(k)G(k)) 
= X(k) + [FT(k)K(k + 1) J [F(k) - B(k )G(k)] . 

This equation is solved backward from the terminal condition, K(N + 1) = 
Xt( k). The untracked state estimate x( k I k) is reconstructed from the 
tracked information estimate and the (information matrix), 

x(k I k) = y-1 (k I k)y(k 1 k). (9.88) 

Solution Statement 
The optimal stochastic control for a problem described by linear system 

models driven by white Gaussian noise, subject to a quadratic cost criterion, 
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Optimal Stochastic Control 

consists of an optimal linear Information filter cascaded with the optima.! 
feedback gain matrix of the corresponding deterministic optimal control 
problem. This means the optimal stochastic control function is equivalent 
to the associated optimal deterministic control function with the true state 
replaced by the conditional mean of the state given the measurements. 
Illustration of this stochastic control solution is shown in Figure 9.15. 

The importance of this result is the synthesis capability it yields. Un-
der the LQG assumptions, the design of the optimal stochastic controller 
can be completely separated into the design of the appropriate Information 
filter and the design of an optimal deterministic controller associated with 
the original problem. The feedback control gain matrix is independent of 
all uncertainty, so a controller can be designed assuming that x(k) is known 
perfectly all the time. Similarly, the filter is independent of the matrices 
that define the controller performance measures. The estimation algorithm 
can thus be developed ignoring the fact that a control problem is under 
consideration. 

Algorithm Summary 
Estimation is carried out according to the Information filter Equations 

9.36 and 9.37. The information estimate y(k I k) is used to generate the 
state estimate and then the control signal. 

x(k 1 k) = y- 1 (k I k)y(k 1 k) (9.89) 

u(k) = -G(k) [x(k I k)- X.T(k 1 k)]. (9.90) 
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The control law is generated as follows: 

G(k) = (U(k) + BT(k)K(k)B(k)r1 [BT(k)K(k)F(k)] (9.91) 

K(k) = X(k) + [FT(k)K(k + 1)] [F(k)- B(k)G(k)]. (9.92) 

This is the optimal stochastic LQG control solution for single-sensor and 
single actuator-system. Before extending it to multisensor and multiactu-
ator systems, the case of stochastic control problems with nonlinearities is 
considered. 

9.7.3 Nonlinear Stochastic Control 
The separation and certainty equivalence principles do not hold for non-

linear systems. Several methods have been employed in literature to at-
tempt to solve this problem [14]. These include linear perturbation control 
(LQG direct synthesis), closed-loop controller ("dual control" approxima-
tion) and stochastic adaptive control. 
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In this chapter, assumed certainty equivalence design is used. This is a 
synthesis technique that separates the stochastic controller into the cascade 
of an estimator and a deterministic optimal control function even when 
the optimal stochastic controller does not have the certainty equivalence 
property. It must be emphasized that, by definition, certainty equivalence 
assumes that the separation principle holds. Thus, the first objective is to 
solve the associated deterministic optimal control, ignorin~ the uncertain-
ties and assuming perfect access to the entire state. Deterministic dynamic 
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programming is used to generate the control law as a feedback law. The 
second objective is to solve the nonlinear estimation problem. This has 
already been done by deriving the EKF and ElF. In order to utilize the 
advantages of information space, the ElF is used. 

Finally, the assumed certainty equivalence control law is computed by 
substituting the linearized information estimate from the ElF in the deter-
ministic control law. This is the assumed certainty equivalence nonlinear 
stochastic control algorithm, illustrated in Figure 9.16. One important spe-
cial case of this design methodology is the cascading of an ElF equivalent 
of a constant gain EKF to a constant gain linear quadratic state feedback 
controller. The constant gain EKF has the basic structure of an EKF, ex-
cept that the constant gain is precomputed based on linearization about 
the nominal trajectory. This filter is robust against divergence. However, 
there is no fundamental reason to limit attention to constant gain designs 
other than computational burden of the resulting algorithms. 

CENTRAL 
PROCESSOR 

Sensors 

FIGURE 9.17 
Centralized Control 

8 
Equipped with both single sensor LQG and nonlinear stochastic control 

algorithms, the next step is to extend them to multisensor and multiactu-
ator control systems. 
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9. 7.4 Centralized Control 

Just as in the multisensor data fusion case, there are three broad cate-
gories of multiactuator control architectures: centralized, hierarchical and 
decentralized. A centralized control system consists of multiple sensors 
forming a decentralized observer. The control realization remains centrally 
placed, whereby information from the sensors is globally fused to generate a 
control law. Figure 9.17 shows such a system. Only observations are locally 
taken and sent to a center where estimation and control occurs centrally. 
The information prediction equations are the same as those of a single-
sensor system, Equations 9.34 and 9.35. 

Control Generation 
Global information estimates are centrally computed from global infor-

mation predictions and observations generated by the different sensors. The 
state estimate is reconstructed from the tracked central information vector 
and matrix. The control vector is then computed from the state error and 
globally generated control law. The entire algorithm is illustrated in Figure 
9.17. The main feature of this arrangement is the ability to employ several 
sensors while retaining a single central actuator. 

In addition to using multiple sensors, it would be even more beneficial if 
multiple actuators could be used, such that control achieved locally is the 
same as that achieved with a centralized controller. This is the motivation 
behind decentralized multisensor-based control. The approach adopted is 
to initially derive a fully connected decentralized control system, and then 
proceed to eliminate the full connection constraint to produce a scalable 
decentralized control system. 

9.8 An Extended Example 

Consider the mass system depicted in Figure 9.18. This system consists 
of four trolley masses interconnected by springs. Input in any one affects the 
other three. It is chosen because it is the simplest example possessing all the 
characteristic properties of an interconnected, multisensor, multiactuator 
dynamic system. It is used here to show how nodal transformations can be 
derived by using the system model F( k) to identify those states that are 
locally relevant. 

First, the case is developed where the local states are unsealed, locally 
relevant, individual global states. The case of local states proportionally 
dependent on individual global states is then considered. Finally, the case 
of linear combinations of global states as local states is developed. The 
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FIGURE 9.18 
Coupled Mass System 

results arc then generalized to cover any coupled system. 

9.8.1 Unsealed Individual States 

m X 3(k) 

The position and velocity of a general mass j are denoted by 
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(9.93) 

The global (central) state vector x(k), which consists of all the states of 
the system, can be defined as follows: 

xo 
:io 

r x~n(k) l X1 

x'l(k) :il 
(9.94) 

x2(k) X2 

x'3(k) :i2 

X3 

:i3 
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Rearranging the states so that the positions and velocities are grouped 
together gives the global state vector 

xo 
X1 

X2 

x(k) = X3 
X4 (9.95) 

X5 
X5 
X7 

where the last four states are the velocities, i.e., 

(9.96) 

9.8.2 Continuous Time Models 

Each of the four masses is conceptually decoupled and the forces operat-
ing on each is analyzed. As a result, the following equations are derived: 

x·l + (bjml)x1 + (k/m1)(x1- x2) = (ul/m1) 

i'2 + (bjm2)x2 + (kjm2)(2x2- x1- x3) = (u2/m2) 

i3 + (bjm3)X3 + (kjm3)(2x3- x2- x4) = (u3jm3) 

i4 + (bjm4)x4 + (kjm4)(x4- x3) = (u4jm4). 

Rearranging the free body equations, 

Xl = X5 
X2 = X6 

X3 = X7 
X4 = xs 
X5 = -(kjm1)x1 + (k/m1)x2- (bjm1)x5 
X5 = (k/m2)x1- 2(kjm2)x2 + (kjm2)x3 (b/m2)x5 

X7 = (kjm3)x2 - 2(kjm3)x3 + (kjm3)x4 - (bjm3)x7 
Xs = (kjm4)x3- (kjm4X4- (b/m4)xs. 

The continuous-time system models in the equation 

x(t) = Ax(t) + Bu(t) + w(t) (9.97) 
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are then given by 

0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 0 0 

A= 0 0 0 0 0 0 
-k/ml kjm1 0 0 -b/ml 0 
k/m2 -2k/m2 k/m2 0 0 -b/m2 

0 kjm3 -2k/m3 kjm3 0 0 
0 0 k/m4 -k/m4 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

B= 0 0 0 0 
(1/mi) 0 0 0 

0 (l/m2) 0 0 
0 0 (1/m3) 0 
0 0 0 (1/m4) 

Using the following numerical data, 

k1 = k2 = k3 = k4 = 50N /m 
m1 = m2 = m3 = m4 = l.OKg 
h = b2 = b3 = b4 = O.lN/(m/s) 

Ul = U2 U3 = U4 = ION, 

gives the following models: 

0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 

A= 0 0 0 0 0 0 0 
-50 50 0 0 -0.1 0 0 
50 -100 50 0 0 -0.1 0 
0 50 -100 50 0 0 -0.1 

0 
0 
0 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 

-bjm3 
0 

0 0 50 -50 0 0 0 -0.1 
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0 
0 
0 
1 
0 
0 
0 

-bjm4 



718 Design and Analysis of Control Systems 

0000 
0000 
0000 

B= 0000 
1 0 0 0 
0 1 0 0 
0010 
0 0 0 1 

9.8.3 Discrete Time Models 

The state-transition matrix F(k) and the input control matrix B(k) are 
derived from the continuous-time model matrices A and B. The state-
transition matrix F(k) is computed by the series method (discussed in 
Chapter 7), where for linear time-invariant systems, 

n 

F(k) = eA(t:,.T) =I+ I)(L~T)iAi}/i! 
i=l 

A discrete-time approximation can be applied if 6T is sufficiently small 
compared with the time constants of the system. 

F(k) =I+ (6T)A 
B(k) = (6T)B. 

For the mass system, both the approximation and the general method give 
the same results. This is because 6T, which was taken as 1.0 sec, is suffi-
ciently small compared with the time constants of the system. The following 
system and observation models are obtained: 

1 0 0 0 1 0 0 0 
0 1 0 0 0 1 0 0 
0 0 1 0 0 0 1 0 

F(k) = 0 0 0 1 0 0 0 1 
-50 50 () 0 0.9 0 0 0 
50 -100 50 0 0 0.9 0 0 
0 50 -100 50 0 0 0.9 0 
0 0 50 -50 0 0 0 0.9 
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B(k) = 

0000 
0000 
0000 
0000 
1000 
0100 
0010 
0001 

H(k)= 01000000 
00100000 

[
100000001 

00010000 

[
2 0 0 0 1 

R(k) = 0 1.5 0 0 
0 0 4 0 ° 

0 0 0 2.5 

9.9 Nonlinear Control Systems 

719 

In most of the material covered in the previous eight chapters, it has been 
assumed that the dynamics of systems to be controlled can be described 
completely by a set of linear differential equations and that the principle 
of superposition holds. Such systems are known as linear dynamic sys-
tems. However, in most applications, these assumptions are not valid, and 
the systems are termed nonlinear dynamic systems. The nonlinearity of 
dynamic systems can be inherent or deliberately added to improve the con-
trol action. The material in the next sections addresses the whole concept 
of nonlinear systems, their analysis, and control design. 

9.9.1 Nonlinear Dynamic Systems 

The main characteristic of nonlinear dynamic systems is their failure to 
follow the principle of superposition. That is, the combined output of two 
or more inputs is not necessarily equal to the resultant of the outputs due to 
the individual inputs. There are two reasons for this behavior to manifest. 
The foremost reason is that the dynamics of such a system is described by 
a set of nonlinear differential equations, and the other reason is the energy 
losses, response delays and size limitations in the system itself. Nonlinear 
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dynamic behavior that follows nonlinear differential equations can be easy 
to handle if it can be modeled completely. However, the nonlinearities due 
to energy losses, delays, and size limitations are normally difficult to model 
precisely and hence, the control is quite difficult in some situations. In gen-
eral, any nonlinear differential equation which describes nonlinear dynamics 
can be decomposed into a linear differential equation and a hard nonlinear 
element due to either energy loss, size limitation or response delays. In this 
section, different hard nonlinearities are discussed. Mathematical models 
for such nonlinearities will be given. 

Like linear systems, the analysis of nonlinear systems is mainly concerned 
with the study of the dynamics of such systems, thereby identifying stabil-
ity zones and other parameters of interest for control purposes depending 
on the problem. In this section, three methods for the analysis of nonlinear 
systems will be discussed. These are phase plane methods, describing func-
tion analysis methods and Lyapunov stability method. Nonlinear problems 
usually arise because the structure or the fixed elements of the system are 
inherently nonlinear. Another source of nonlinearities is nonlinear com-
pensation introduced into the system for purposes of improving system 
behavior. Figure 9.19 shows some examples of nonlinear elements. 

N)y 
y 

N 

y 

-a 
~-a u u 

-N -N 

I 
(a) (b) (c) 

y y y 

Slope K 0 

Slope K 0 

-a -a 
a u a u 

(d) (e) (f) 

FIGURE 9.19 
Examples of Nonlinear Elements 
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Figure 9.20 shows a nonlinear element in a control system. 

r 

FIGURE 9.20 

Nonlinear 
element 

(a) 

Nonlinear Element in a Control System 

9.9.2 Describing Function Analysis 

m 

-1 

(b) 
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When studying the frequency response of linear dynamic systems in 
Chapter 6, t.he input was treated as a sinusoid. In that case the output 
was also a sinusoid with the same frequency as the input signal, but differ-
ing in amplitude and phase. For nonlinear systems subjected to sinusoid 
input, the output will be periodic but not sinusoid. Fourier expansion of 
such output gives an infinite number of sinusoids with frequencies that are 
harmonics of the input frequency. Using the advantage of the complex rep-
resentation of the signals the rlescribing function is rlefined as the ratio of 
the fundamental component of the nonlinear output and input signals. 

The describing-functions technique is an extension of frequency-response 
methods to nonlinear systems. Classically, it is applicable only to nonlinear 
elements whose outputs in response to sinusoidal inputs with period T (i.e., 
of the form Asin27ft/T) are also periodic with period T. The output can 
then be written as a Fourier series: 

= I: Bn sin(nwt + ¢). 
n=l 

The describing function is the ratio of the complex Fourier coefficient B1 eJ<I>t, 
which is essentially a frequency response function of an approximation of 
the nonlinear element. In general, B 1 and ¢ 1 are functions of both input 
frequency w = 27f /T and the input amplitude A. Therefore, the following 
can be written: B 1 = B 1(A,w) and ¢1 = ¢1 (A,w). 

To apply the method, the describing functions must first repbce the 
nonlinearities in the block diagram. Then the frequency domain techniques 
can be used to analyze the system, with some modification to account for 
the dependence of B 1 and ¢ 1 on A. 
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9"9.3 Phase Plane Methods 

For any second-order system, there are two states x 1 and :r2 . A plane 
formed by these states is called the phase plane. Given some initial condi-
tions of the system dynamics, one can plot the variation of the two states in 
this phase plane. This plot is known as the phase motion trajectory of the 
system for the given initial condition. Different initial conditions result in 
difl:'erent motion trajectories forming system phase portraits. Phase plane 
analysis is a graphical method that uses the information from the phase 
portrait of the system to analyze the dynamics of the system in question. 
It enables one to visualize the dynamics of the system without having to 
solve nonlinear differential equations analytically. One of the major advan-
tages is that it can handle all types of nonlinearities, i.e., smooth, strong, 
and hard nonlinearities. On the other hand, however, it has the limitation 
that it cannot handle higher-order systems because of the computational 
complexity a::; well as the complexity associated with graphical presenta-
tion of higher-order systems. The only way phase plane methods can be 
applied to higher-order systems is by approximation of these systems to 
second-order equivalents. This section discuses the fundamentals of phase 
plane analysis, presenting the theoretical basics of the method that even-
tually lays a strong groundwork for understanding the stability of systems. 
The methods for plotting and interpretation of the system phase plots are 
presented. 

9.9.3.1 Theory Behind Nonlinear Phase Plots 

Although the phase plane methods are basically designed for second-
orders systems only, the material in this section has been presented to 
assume any system (even a higher-order system) that can at most be pre-
sented using only two states, as for second-order systems. This makes it 
possible to apply the method even to higher-order ones without the need 
to approximate them, providing the controllable states of interest are only 
two. The study of nonlinear phase plane basics starts by the discussion of 
time dependency structure of nonlinear systems. 

The time dependence of nonlinear systems is classified as being either 
autonomous or non-autonomous, depending on the appearance of the time 
t in its system difl:'erential equation. For an autonomous system, the time 
t does not appear explicitly in its di1Tercntial equation. It is only the time 
differential dt that appears and such a system is normally described by a 
nonlinear function, say j, as 

x = f(x, x). (9.98) 

Non-autonomous systems have direct dependence on the time and as such, 
the time t appears directly in their differential equation as 
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x = f(t,x,x). (9.99) 

Phase plane analysis of non-autonomous systems is complex because of the 
need to add an extra axis for the time element. For generality, however, 
non-autonomous systems can also be handled as autonomous systems by 
expressing them as 

x(t) = f (x(t),x(t)). (9.100) 

In the following discussion, the assumption is made that the system is 
autonomous, with the understanding that non-autonomous systems can be 
handled this way. Consider the system described by Equation 9.98. With 
choice of the state variables as 

This system can be represented in state-variable form as 

or in general form as 

X1 = X2 

x2 = j(x1,x2), 

x1 = JI(x1,x2) 
X2 = h(x1,x2). 

{9.101) 

(9.102) 

The plane describing the relationship between the two states with coor-
dinate axes x1 and x2 is known as the phase plane. It can be regarded as 
a special case of the state-space with two states only. A point in the phase 
plane represents the state of the system. Now, as the system state changes, 
a point in the phase plane moves, thereby generating a curve that is known 
as the state (or phase) motion trajectory, or simply the trajectory. The 
time rate at which the state changes its position is called the state veloc-
ity or trajectory velocity. A family of state trajectories corresponding to 
various initial conditions in one plane is called the phase portrait of the 
system. 

Phase plane analysis is based on the observation that the slope of the 
trajectory through any point is given by the expression 
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d:I:z dx2 dt 
--

dx1 dt d:r 1 
Xz 
X1 

h(xl, x2) f(xl, x2) 
!I(x1,x2) X2 

with tbe following properties 

dx1 0 -> dt 
dx1 0 -< dt 

for x2 > 0 

for x 2 < 0. 

(9.103) 

(9.104) 

Thus, motion trajectories are directed to the right in the upper half plane 
and to the left in the lower half plane. Typical phase plane trajectories are 
shown in Figure 9.21. 

FIGURE 9.21 
Typical Phase Plane Trajectories 

For the autonomous system in 9.98, one can easily observe that if x 1 

represents the system position, then x 2 represents the system velocity so 
that the system acceleration can thus be given as a function of both the 
position and velocity, i.e. 

X (9.105) 



Advanced Control Systems 725 

Based on these observations then, it can be inferred that the gradient of 
the motion trajectory in the phase plane gives the ratio of the system accel-
eration to velocity. As such, horizontal trajectories for which the gradient 
is zero either represents infinity velocity or zero acceleration. However, 
because of the physical difficulty of realizing an infinity velocity, it is gen-
erally accepted that the horizontal trajectories represent zero acceleration, 
i.e., constant velocity. In most systems, zero acceleration occurs at either 
the vertical turning points or at the origin when all quantities are zero. 
Similarly, vertical trajectories that might represent either infinity accelera-
tion or zero velocity are taken to represent zero velocity, which also occurs 
either at the origin or at the horizontal turning point. It can be seen that 
the origin has dual characteristics as far as the system motion is concerned. 
This makes the origin a special point in phase plane analysis such that a 
detailed discussion of the system behavior at the origin is given in later 
sections. 

It should be noted with great care that the notion of system position 
and velocity discussed here is different from that of the state position and 
velocity, which will later be used to describe the system equilibrium and 
hence stability. While the system velocity and position can have a physical 
quantity associated with them, the state position and velocity are graphical 
quantities that do not necessarily need to have physical quantities associ-
ated with them. 

9.9.3.2 Techniques for Plotting Phase Trajectories 

lf the variables X1 and x 2 in Equations 9.101 and 9.102 can be separated, 
the normal integration methods can give explicitly the motion trajectories. 
However, for most nonlinear systems, this is not a realistic possibility, hence 
graphical or semi-graphical construction (geometric) methods arc normally 
used. The common graphical methods used are the Reinhardt construction 
method, the method of isoclines and the method of isocentrics. In this 
section, each of these methods is discussed. 

9.9.3.2.1 The Reinhardt Construction Method The Reinhardt con-
struction method applies when a system can be described as 

f(x, x) = -Ax- g(x) (9.106) 

so that the trajectory gradient becomes 

(9.107) 
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The first step under this method is to identify and plot out all points of 
,;ero trajectory gradient by setting 

or simply 

(9.108) 

These points, as it has been stated before, are the vertical turning points of 
the trajectories (i.e., maxima and minima). Once this is done, the next step 
is to identify the directions of all trajectories in the phase plane, i.e., the 
direction field. Generally this is a geometrical process whose description is 
as shown in Figure 9.22. 

R 

FIGURE 9.22 

' I 
I ' 

Description of Geometrical Process 

Consider point P( x 1 , x 2 ) on the phase plane. The gradient of the tra-
jectory that passes through this point is given by Equation 9.107. This 
is the negative tangent of the angle e in the fourth quadrant (see Figure 
9.22). According to Reinhardt (which can be easily verified from the above 
figure), this angle 0 equals angle QRF if a line is drawn from R on the 
x 1- axis to point P, making a right angle with the locus of zero gradient. 
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Therefore, the following relations are valid 

tan(B) = tanLQRP 
PQ 
QR 
-x1- (±) g(:r2) 

X2 
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(9.109) 

Thus, by a pair of compasses, it is possible to construct all direction fields 
using short segments for all points P(x1,x2 ) as small arcs of a circle whose 
centre R is given as 

and radius RP is 

RP= (9.110) 

By this approach for all points of interest in the phase plane, the whole 
plane will be covered by short line segments all pointing in the directions 
of the trajectories. Depending on their density, by joining these segments 
the motion trajectory can be traced as shown in Figure 9.22. 

Method of Isoclines: In the phase plane, isoclines are lines of constant 
trajectory gradient. The method of isoclines, as the name implies, traces the 
phase portrait of the system by identifying the points of the same gradient. 
This method can be seen to be more general than that of Reinhardt, but 
it involves more computations than the Reinhardt construction method. It 
applies to any general system of the form 

x = f(x, x). 

The method of isoclines sets the gradient constant by assigning it a definite 
number, say a, and then solving the gradient equation for the curve. 

dx2 j(x1, x2) 
dx1 x2 

= cjy(x1, x2) =a (9.111) 

This will give all points at which the trajectory gradient is a. 
Practically, this is clone by determining the gradients at every point 

P(:r 1 , :r2 ) in the phase plane, and then drawing a line segment that points 
in the direction corresponding to the gradient at the point. Finally, the 
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whole phase plane will be covered by line segments that represent direction 
fields, and the trajectory can be traced out by joining these segments. 

Method of Isocentrics: By definition, isocentric circles are circles 
with a common centre. Closely related to this definition, the method of 
isocentrics is inspired by the Reinhardt construction, where it was observed 
that whenever the trajectory crosses any point P(x1 , x2 ) in the phase plane, 
it is tangential to a clockwise arc of centre R(c, 0) where 

The isoccntric method generates the direction fields in the phase plane by 
using this equation for a constant value of c. As can be seen, this method 
is just a variant of Reinhardt's construction method, but it is simpler ihan 
both the Reinhardt method and the method of isoclines. When using this 
method, the radius of construction is set so that 

where the centre ( c, 0) is determined in advance. 

9.9.3.3 Equilibria and Singular Points in the Phase Plane 

Before delving further into the subject of this section, the difference be-
tween the system velocity and the state velocity is clarified first. In the 
previous section, it was mentioned that, for a second-order system, 

x = f(x, x). 
The quantities x and x are referred to as the system position and velocity 
respectively, while x is the system acceleration. The system position could 
be temperature and the corresponding system velocity becomes the rate of 
change of this temperature. Now, to introduce the idea of the state velocity, 
recall that it has been defined before that the state (or trajectory) velocity 
is the rate at which the system changes its states. No physical meaning 
can be attached to the state velocity, rather than that it is a vector sum 
of the rates of change· of the system states. Since, in most cases, the states 
have different physical meanings, and hence different units, the state or 
simply trajectory velocity cannot have proper units. It is just a parameter 
introdnced for analytical purposes because it is more useful in describing 
the system stability than the system parameters. 

The state velocity y_ is given as the vector sum of the system states 
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thus the magnitude of this velocity, normally known as the state speed, is 

. I. 2 . 2 
v = v ;£1 + ;£2. 

When the magnitude of this state speed is zero, which means the system 
states are not changing, the equilibrium point is said to be reached. In that 
situation, both the system velocity and the system acceleration are zero, 
so that the states remain stationary at one point in the phase plane. By 
virtue of this definition, one can see that the equilibrium point must occur 
at least along the vertical axis, i.e., 

And since the system acceleration can be inferred from the trajectory gra-
dient, which has been defined before as the ratio of the system acceleration 
and system velocity, i.e., 

dx2 f(xl, x2) 
dx1 x2 

The system acceleration can then be written as 

(9.112) 

which indicates that for the system acceleration x2 to be zero, then either 
the system velocity x 2 is zero or the trajectory gradient is zero. For most 
analytical applications, tlw former condition is normally assumed, because 
even if the latter is the prevailing condition, it still can be transformed to 
the former condition by coordinate transformation procedures. From the 
observations given above, the system equilibrium point is defined to be at 
the origin. 

Another useful parameter in the phase plane plots is related to the conti-
nuity of the trajectory. All points in the trajectory for which the gradient is 
well defined according to Equation 9.103 are non-singular. Singular points 
are the ones for which the gradient is indeterminate. In most cases, these 
refer to discontinuities in the phase trajectory, but the other singular oc-
curs when both x2 and f(x 1, x2) are zero, in this situation, the trajectory 
gradient 

0 

0 
(9.113) 

is indeterminate (neither zero, infinity nor any number). It can easily be 
observed that this point also corresponds to the origin of the phase plane, 
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which, as has been seen before, is the equilibrium point of the system. 
Therefore, it can be concluded that the origin is both a singular point and 
an equilibrium point of the system. For some systems, there might be more 
than one equilibria and singular points, but it is only the origin that is both 
the equilibrium and the singular point of the system. In dynamic systems, 
stability depends highly on both the equilibrium and singular points, and 
for that reason, the origin makes a good operating point for most systems 
because it has hoth the singularity and equilibria characteristics. In the 
next section, the relation between the system equilibrium and stability are 
discussed. 

9.9.3.4 Stability of Equilibria in Phase plane 

To be able to ()Stablish the stability of a nonlinear system using phase 
plane analysis, it is worth studying linear systems first and then extending 
the results to nonlinear systems. This approach is necessitated by the ease 
with which linear systems can be understood. 

Phase Plane Analysis of Linear Systems (Overview): Consider 
an autonomous second-order linear system with the general form 

x(t) + ax(t) + cx(t) = 0, (9.114) 

together with some initial conditions x(O) = xa and x(O) = x,, where 
X0 and X 0 are constants. By choosing states x(t) and x(t), this system can 
be modeled in state-variable form as 

x(t) = Ax(t) 

x(O) = X 0 • 

The solution for such a system was discussed in Chapter 7 and is given by 

which, in component form is 

:r1(t) = e>11 tX0 

x2(i) = e>- 2 tX0 • 

where >. 1 and >.2 are eigenvalues of the system matrix. In the phase plane, 
the gradient of the trajectory can be determined using Equation 9.103, 
which gives 

dx2 = :i:o/\2 eC>-z-.X,)t. 

dx1 :roAl 
(9.115) 

Thus, this system has only one singular and equilibrium point, which is the 
origin when both initial states are zero. 
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FIGURE 9.23 
Both States Increasing or Decreasing 

In the vicinity of the equilibrium point, the states (solutions of state-
variable equation) can take any of the following forms, depending on the 
eigenvalues )11 and ,\2 of the system matrix A: 

• Both states are exponentially increasing or decreasing corresponding 
to the fact that both eigenvalues of A are real with the same sign, 
(positive or negative). This situation is depicted in Figure 9.23. 

• One state is exponentially increasing while the other is exponentially 
decreasing. This corresponds to the situation when the eigenvalues 
are real with opposite sign. 

• Both oscillate with decaying or growing amplitude. This situation 
corresponds to the eigenvalues of A being complex conjugate with a 
non-zero real part. Growing amplitude indicates that the real part of 
the eigenvalue is positive while a decaying amplitude occurs when the 
real part is negative. Figure 9.25 depicts the variation of the states 
with time for this case. 

• Both states oscillating with a constant amplitude, but maybe with 
different phase angles, as shown in Figure 9.26 This case happens 
when the eigenvalues are complex conjugate with zero real-part. 
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X 

----~----------------------------------------------------------t 

FIGURE 9.24 
Exponential Increase or Decrease of State 

As has been shown in previous chapters, the system is said to be stable 
when the real parts of the eigenvalues of A are all negative corresponding 
to one of the possibilities in the first and the third of these four cases. The 
fourth case corresponds to the marginal (neutral) stability of the system. 

Nodes, Foci, Saddle, and Centre Points: When both eigenvalues of 
A are real and have the same sign, the equilibrium point is called a node. 
The node has such characteristics that all trajectories either start or end 
there, depending on the sign of the eigenvalues of A. If both eigenvalues are 
positive, the trajectories start from the node and end at infinity, indicating 
a growing magnitude of the state. Such a node is said to be an unstable 
node. On the other hand, if the eigenvalues are negative, the trajectories 
starting anywhere within the vicinity of the node will end at that node, 
indicating decay in magnitude. Such a node is said to be a stable node. 
Because of the direction of the trajectories relative to the node, the stable 
node is also known as an attractive node, while an unstable node is called 
a repulsive node. Figure 9.27 shows the typical phase portraits of a stable 
and an unstable node. 

Saddle Points: A saddle point corresponds to the case when the matrix 
A has eigenvalues of different signs. A saddle point is characterized by the 
antagonizing nature of the states. To get a clear understanding of the saddle 
points, and also for other cases of phase planes, it is imperative to define 
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FIGURE 9.25 
Decaying Amplitude 

the phase angle ¢ as 
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t 

¢ = tan -l ( :~ ) , (9.116) 

i.e., the tangent of the angle substended by the two states of the system at 
a particular point and the origin. 

Foci: When eigenvalues of A are complex conjugate, the corresponding 
trajectory has a spiral shape with the spiral center at the equilibrium point, 
indicating the changing signs as well as the magnitudes of the states. This 
corresponds to the sinusoidal nature of the states. There are two possibil-
ities for the shape of this spiral, depending on the sign of the real part of 
the eigenvalue. When the real part is positive, then the magnitude of the 
states will be increasing exponentially, hence, the spiral will be such that 
the trajectories start from the equilibrium and run outward to infinity. This 
situation represents an unstable focus. The second case is when the real 
part is negative, in which case, the amplitude of the states will be decay-
ing and hence the trajectories run from infinity to the equilibrium point. 
Similarly, to stable and unstable nodes, the foci can also be described as 
repulsive or attractive. 

Centre Points: For a system with complex conjugate eigenvalues, with 
zero real parts, the states are purely sinusoidal with constant amplitudes 
and hence, the trajectories are cyclic. In a general form, they will be elliptic 
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with major and minor axes corresponding to initial conditions, and they 
become circular when both sides have the same initial conditions. In this 
case, the equilibrium point is the centre of the elliptic (circular) trajectories, 
and hence the name, center point. 

With these characteristics, it is possible to describe the stability behavior 
of the linear system completely where a stable equilibrium corresponds to 
either a stable focns or a stable node. A center point is an equilibrium point 
for a uniformly stable system such as an undamped spring-mass system. 

9.9.3.5 Nonlinear Systems 

Having seen the phase plane portraits of linear systems, attention should 
be turned to nonlinear systems, which are the focus of this chapter. Non-
linear phase plane analysis can be carried out by considering only a small 
range from the equilibrium point where the nonlinear system can be ap-
proximated as a linear one. For this reason, it is sometimes known as local 
analysis. This is basically the equivalent of nonlinear linearization, which 
will be discussed later. Far from the equilibrium points, the nonlinear sys-
tem may display other features that are not common to linear systems. 
The main features of nonlinear phase planes that are not found in linear 
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FIGURE 9.27 
A Stable Node and an Unstable Node 

systems are limit cycles and the presence of multiple equilibrium points. 

9.9.3.6 Systems with Multiple Equilibrium Points 

Consider a system described by 

x= f(x) (9.117) 

where f is a nonlinear function. Since 

xdx = xdx 
the nonlinear Equation 9.117 can thus be written as 

xdx = f(:c)dx 

so that, on integration, it yields 

~x2 =fox j(x)dx +constant (9.118) 

or 

~::i: 2 - fox j(x)dx =constant. (9.119) 

By denoting ~:i: 2 as the kinetic energy per unit mass and J;1' f(:c)dx as 
the potential energy, it can be easily seen that this system is a conservative 
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system in which the total energy is constant, depending on the initial con-
ditions. Different initial conditions together result in a phase plane portrait 
of the shape shown in Figure 9.29 which is characterized by the presence of 
multiple equilibrium points. The different equilibrium points that can be 
seen in the phase portrait of Figure 9.29 include the center points and the 
saddle points. There are many cases where the phase portrait will exhibit 
multiple equilibrium points, however, this typical case presented here is just 
enough to serve as an illustration of the subject. 

9.9.3. 7 Systems with Limit Cycles. 

The limit cycle is the most interesting and unique feature for most non-
linear systems. It was first observed by B. Van der Pol (1926) during his 
study of vacuum tube oscillators, which lead to a nonlinear equation known 
as van der Pol's equation 

(9.120) 

The phase portrait for such a nonlinear system, shown in Figure 9.29, has 
one feature that all trajectories, irrespective of their initial conditions, con-
verge to one closed cycle known as the limit cycle. For different values of 
f.L, the shape of this phase portrait and hence, the limit cycle change, but 
maintain the system position x1 to some value close to 2. When lx11 < 1, 
the dynamics of such a system will keep x 1 increasing (corresponding to 
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FIGURE 9.29 
Multiple Equilibrium Points 

positive real eigenvalues) until lx 1l = 1 . For lx1l > 1 the amplitude will 
decrease with time and reach a point where there is no further decrease, 
but also no increase. l-Ienee, it remains trapped in this cycle, which is the 
limit cycle. On the other hand, if x » 1 ( say far beyond 2), the amplitude 
will decrease up to some point where it cannot decrease any more, but can-
not increase, i.e., the limit cycle. Therefore, it can be seen that trajectories 
inside the circle and those outside the circle all tend to this limit cycle. Tra-
jectories which started on this limit cycle remain there circling periodically 
about the origin forever. It should be noted that van der Pol's system is just 
one of the many nonlinear systems that exhibit limit cycle phenomenon. 
For one to determine whether the system has limit cycles, there have been 
many proposed theorems, some of which are discussed next. 

9.9.3.8 Existence of Limit Cycles 

The existence or non-existence of limit cycles is normally summarized 
in a number of theorems as stated before. There are many theorems for 
the same purpose, however, this section will present only three of them. 
For further information, it is recommended to consult specialized texts on 
nonlinear control theory. 
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9.9.3.9 Bendixson's Theorem 

Bendixson's theorem presents a sufficient condition to guarantee that a 
given nonlinear system does not have limit cycles. The theorem is stated 
as follows: 

Theorem 9.1 If a nonlinear second-order autonomous system 

x = f(x,:i:) 

or in state-variable form 

:X= f(x) 

where x=f:r1 x2f' and f=fh hf' is defined over a region n such that the 
quantity 

(9.121) 

is not identically zero over n and does not change sign, then the system 
phase por'l,rait does not have limit cycles. 

The proof of this theorem requires some knowledge of the calculus of 
vector fields, in particular line and surface integrals, and is done as follows: 
First, it is noted that, since the gradient of the trajectory is 

dx2 h(x1,x2) 
dx1 h(x1,x2)' 

then the equation 

(9.122) 

is satisfied for all trajectories of the system including the limit cycle. Sup-
pose J is a limit cycle in this phase plane, i.e., is a closed trajectory, then 
for each point P(x1,x2 ) on J the vector field f(x) is tangent to J. therefore, 
the closed-loop line integration 

(9.123) 

over J or simply 

1 f(x).n(x)dl = 0, (9.124) 
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where n(x) is an outward normal to J at (x1 ,x2 ). By the divergence theo-
rem, this can be expressed as 

1 f(x).n(x)dl = J is vf(x)dx = 0 (9.125) 

where S is the area enclosed by J. In order for this to hold, either vf(x) 
must be identically zero overS or else Vf(x) must change sign. Now if Sis a 
subset of n, then the hypothesis of the theorem rules out both possibilities. 

9.9.3.10 The Poincare-Bendixson Theorem 

This theorem can be used to prove the existence of the limit cycles, 
provided a domain of the phase plane that satisfies certain conditions can be 
found. Basically, this is concerned with asymptotic behavior of trajectories 
of second-order systems. It states as follows: 

Theorem 9.2 If a trajectory of a second-order autonomous system re-
mains in a finite region n, then one of the following is true: 1)The tra-
jectory goes to the equilibrium point 2). The trajectory tends to an asymp-
totically stable limit cycle. 3) The trajectory is itself a limit cycle. 

The proof of this theorem is omitted here as is the case with many other 
standard textbooks because of its mathematical involvement with algebraic 
topology, which is beyond the scope of this book. However, roughly speak-
ing, this theorem states that if one can find a closed region D in the phase 
plane such that D does not contain any equilibria and such that all points of 
the trajectory are contained in n, then either the trajectory itself is a limit 
cycle or the trajectory goes to an equilibrium point or an asymptotically 
stable point. 

9.9.3.11 The Poincare Theorem 

Poincare theorem presents a simple relationship between the existence 
of limit cycles and the number of equilibrium points it encloses. It states 
that: 

Theorem 9.3 If N is the nu·rnber of nodes, centres, and foci enclosed by 
a limit cycle, and S is the number of saddle points, then if the limit cycle 
really exists in the second-order autonomous system then 

N=S+l. (9.126) 

Like the previous one, this theorem is also mathematically involving and 
is not proved here. It is just one of the many theorems that postulate the 
presence of limit cycles, which together are known as index theorems. A 
number of index theorems can be found in literature on the subject. 
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9.9.4 Lyapunov's Theory 

Lyapunov's theory addresses mainly the question of stability of any sys-
tem, be it linear or nonlinear. It gets more application in nonlinear systems 
because it is the only tool available for the purpose where the other meth-
ods discussed in the previous chapters fail to work. It is well known that 
for any stable system, there is always a point where the motion of such 
a system will converge after some disturbance, whereas there is none for 
an unstable one, thereby resulting in motion divergence even .under very 
slight disturbances. In dealing with stability problems, Lyapunov's sta-
bility theory appears in two versions, the Lyapunov linearization method 
(first method) and the Lyapunov direct method (second method). Before 
delving into Lyapunov's stability theories, the basics behind the theory are 
introduced. 

9.9.4.1 The Basics of Lyapunov's Theories 

The question of stability can be better described in terms of the motion 
trajectory and equilibrium points in the phase plane as discussed before. 
If any point in the phase plane is taken, one can identify the state x(t) as 
being stable or unstable depending on certain conditions, as described in the 
following discussion. First, consider linear systems. The reader is assumed 
to be familiar with the mathematical notation used here because of the 
mathematical nature of the topic itself, as they simplify the presentation. 
These symbols can be revisited in the list of symbols at the beginning of 
this book. 

Recall that a linear system 

has a solution 

x(t) = A(t)x(t) 

x(t) E :!Rn 

x(t) = 1>(to, t)x(ta) 

(9.127) 

(9.128) 

where 1>(t0 , t) is the state-transition matrix of the system. This solution 
x(t) is an equilibrium if 

x(t) = 1>(T, t)x(ta) = x(t0 ) 

\:IT :2:: to. 
(9.129) 

This proposes two possibilities that either 1>(T, t) is an identity matrix or 
x(ta) is zero. If 1>(T, t) is an identity matrix, then the entire subspace 
:!Rn consists of equilibria for the system which is a trivial possibility. The 
only reasonable possibility is for the x(t) to be zero. Further on, it will 
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be recalled that the equilibrium point x(t) of a dynamic system in 9.127 is 
such that x(t) = 0, i.e., 

A(t)x(t) = 0 (9.130) 

t E JR+. 

In other words, the equilibrium point of the system is the null-space of 
the system matrix A(t). This suggests that for an unforced process that 
starts in a state of rest, which is its equilibrium point, will remain in that 
state of rest indefinitely unless disturbed by some external forces. This 
requires that small perturbations in the initial state result in arbitrarily 
small perturbations in the corresponding solution trajectories. That is, 
the norm of the solution II x II does not exceed a pre-specified number c. 
Theoretically, this assumes that it is possible to determine a priori bound 
8(t0 ,c) on the norm of the initial condition llx(to)ll in such a way that any 
solution trajectory of the system starting at t 0 from an initial state inside 
a sphere of radius 8(t0 , c) will always remain inside this sphere at position 
r::::; c. 

From this observation, three conditions pertaining to the stability of an 
equilibrium can be defined, all based on the fact that a stable system has 
the property that, if it starts from some state x( t + St) ~ x* (t), then in the 
long term it remains in that state or tends to the equilibrium point x*(t). 
These are summarized as follows: 

® A system x(t) = A(t)x(t) with equilibrium point x*(t) is said to be 
stable if for every E > 0, there exists for each t 0 E IR+ a term 8 > 0, 
depending on t0 such that the error between the initial state x( t 0 ) 

and the equilibrium point x*(t) is bounded by 8, i.e., 

It then follows that 

llx(to)- x*(t)ll ::::; 8. 

II<I>(t, to)x(to)- x*(t)ll::::; c 
'Vt > to. 

(9.131) 

(9.132) 

(9.133) 

e If the error bound in the stable system described above is independent 
of time it becomes a uniformly stable system. 

• The system will finally be termed as being unstable if it is not stable 
in both senses described above. 

These conditions constitute what is known as the Lyapunov stability. 
Another notion found frequently in the description of the Lyapunov sta-
bility of systems is that of asymptotic stability. Briefly, the asymptotic 
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stability refers to long-term stability as time t ---+ oo. An asymptotically 
stable system is a stable system in the Lyapunov sense, but, when per-
turbed from the equilibrium position, in the long term, it will converge to 
its original position. Generally, it requires that, in addition to Lyapunov 
stability, there exist a number R > 0 depending on the initial condition at 
t0 such that if 

then 

llx(to)- x*(t)ll ~ R, 

lim 
<P(t, to)x(t0 ) = x*(t). 

t ---+ CXJ 

(9.134) 

(9.135) 

It becomes uniformly asymptotically stable if it is uniformly stable, asymp-
totically stable and converges to x*(t) independent of the initial condition 
t 0 , and the initial error is also independent of time, such that for every 
c > 0, there exists T > 0 and R > 0 such that 

II<P(to + T, to)x(to)- x*(t)ll ~ c:. 

Now consider a nonlinear system described by a differential equation 

x(t) = f(t,x(t)) (9.136) 

t > 0; x(t) ElRn; 

satisfying a global Lipschitz condition so that it has a unique solutiou for 
each initial condition. If the solution to such an equation is s(t,x(t0)) 

corresponding to some initial condition x(t0 ), i.e. 

ds( t, x( to)) 
dt s(t, x(to)) 

Vt 2': to 

Then the equilibrium condition is 

x(t) = o 
f(t,x(to)) = x(to) 

Vt 2': lo 2': 0; 

s(t, x(t0 )) = x(to). 

Vx(t.o) E JR.". 

(9.137) 

(9.138) 

(9.139) 

This translates to meaning that if the system starts in equilibrium, it 
stays there. In most cases, the equilibrium point is assumed to be the 
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origin (x(t0 ) = as has been discussed in the phase plane analysis, and if 
a different value ( x(t0 ) =f. is given, coordinate transformation is done 
so that this given x(t0 ) becomes the origin. Thus, the equilibrium is at 

f(t, 0) = 0 

s (t, x(t0 )) = 0 

\It ?:_ 0 \Ito ?:_ 0. 

(9.140) 

(9.141) 

Now, for nonlinear systems, the Lyapunov theory is concerned with the 
function s(t,x(t0 )) when x(t0 ) =f. 0 but close to 0. Before a thorough 
discussion on the Lyapunov theory is given, it is important to define a few 
stability terms that define the Lyapunov stability. They are essentially the 
same as those for the linear system and can be listed as: 

• The equilibrium x(t) == 0 is stable if for each E > 0, at each t E 
there exists a number 6 = 6(s, t 0 ), depending on the initial conditions 
at t 0 such that 

jjs(t,x(to))jj < E (9.142) 

for jjx(to)Jj < 6(s,to) VI. ?:_ t 0 . 

• If for each > 0 there exists a number 6 = 6(s) independent of the 
initial conditions at to such Lhat 

jjs(t,x(to))jj < E (9.143) 

for jjx(to)Jj < 6(s) 

then the equilibrium is said to be uniformly stable. 

• The eqnilibrium is unstable if it is not stable, i.e., has neither stability 
in the fin;t sense nor second sense. 

Similarly, the asymptotic stability of nonlinear systems can be defined as 
the long-term measure of the Lyapunov stability as timet -----> oo. Basically, 
this requires that the states that started close to a stable equilibrium will 
converge to the equilibrium in the long term. Since under the Lipschitz con-
tinuity of f the solution of the nonlinear dynamics is a continuous function 
of the initial condition, given any t 0 ?:_ 0, and any .finite T, the map s( ., x( t 0 ) 

that takes the initial condition into the solution trajectory in C" [t0 , T] is 
continuous, then in the long term as t -----> oo, C"[t0 , oo] becomes a linear 
space of continuous n-vector valued function on [t0 , oo]. A Banach space 
BC"[t0 , oo] can be defined as a subset of C"[t0 , T] consisting of bounded 
continuous functions such that 

max 
jjx(.)jj" = [ ]jjx(L)jj t E to, ex:; 

(9.144) 

Therefore, the asymptotic stability can then be defined as follows: 
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e For each to ;::::: 0, there is a number d(to) that defines the boundary 
of stability such that s(., x(to)) E BCn[to,oo] whenever x(to) E Bd(to) 
where Bd is the radius of the bounding sphere defined as 

Bd = {x E JP(n: llxll < d}. (9.145) 

eo The map s(.,x(to)) that maps initial condition x(to) E Bd(tu) inlo 
the corresponding solution trajectory in BC" [to, oo] is continuous at 
xo = 0 for each to ;::::: 0. 

It should be noted that normally the stability of an equilibrium point 
depends on some criterion number defined as a number 8 = 8(t,c) that 
is greater than zero. This number may depend on both some prespecificd 
criterion c and timet. HoweYer, if it happens that 8 is independent of time, 
then the equilibrium point is said to exhibit uniform stability. Now, since 
autonomous systems are independent of time, the distinction of stability 
and uniform stability is not there. 

Another measure employed hand in hand with the exponential stability in 
defining the long term Lyapunov stability is the exponential stability. The 
concept of exponential stability is an expression of the measure of the rate 
at which a perturbed equilibrium goes back to its original state x(t0 ) = 0. If 
the perturbed state vector of the system converges back to its equilibrium 
faster than an exponential function, the equilibrium is said to have an 
exponential stability. This type of stability is stronger in a sense than the 
asymptotic stability, because it not only gives the convergence property of 
the equilibrium that is expressed by the asymptotic stability, but also goes 
further to express how fast the convergence will occur. :VIathematically, the 
exponential stability can be described as follows: 

o If there exists some strictly positive numbers a and ,\ such that 

lls(to + t,x(to))ll :'S allx(to)lle->.t 

\:It, to;:::: 0 

Vx(to) E BT 

(9.146) 

where Br is the range or the radius of the Lyapunov stability, then 
the equilibrium x(t0 ) is said to be exponentially stable. This gives a 
stronger and explicit boundary on the state of the system at any time 
t ;::::: to. 

Finally, consider the concept of local and global stability. So far, the 
previous discussion on stability has been focusing on the behavior of the 
system at some state close to the equilibrium position. In other words, this 
has been a study of the local behavior of the system in the neighborhood 
of the equilibrium position, hence it constitutes what is known as the local 
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stability of the system. When attention is paid to the behavior of the sys-
tem when the initial state is at some distance away from the equilibrium 
position, the concept of global stability comes in. If asymptotic (or expo-
nential) stability holds for any initial states, irrespective of their position 
from the equilibrium position, then the equilibrium is said to be globally 
asymptotically (or exponentially) stable. 

It is emphasized that these refined concepts of stability are more ap-
plicable to nonlinear systems than linear systems because while it is pos-
sible for a nonlinear to be locally asymptotically stable but not globally 
asymptotically stable, the same is not the case with linear systems. Linear 
time-invariant systems that are asymptotically stable are automatically ex-
ponential and globally stable. A distinction among these forms of stability 
for linear systems is nonexistent. 

9.9.4.2 Lyapunov's Linearization Method 

This method looks for the local stability of a nonlinear system under 
justifiable assumption that any nonlinear system can be linearized over a 
small range of motions. It is an analysis tool that enables us to study the 
dynamics of a nonlinear system using a model of a linear system. Although 
there are various methods of linearizing a nonlinear system, Lyapunov's 
linearization method serves as a fundamental justification of using linear 
control techniques on nonlinear systems. 

To describe the concept of linearization, consider the autonomous system 

x(t) = f(x(t)) (9.147) 

with an equilibrium x(t0 ) = 0 so that f(O) = 0 and f :JRn ~ JRm is continu-
ously differentiable. Let A be the Jacobian matrix of fat the equilibrium 
point, i.e., 

A_ [ar] 
- 8x x=O. 

If the Jacobian matrix is used to define a linear system Ax(t) then the 
residual of the linear approximation of f(x(t) by this linear function be-
comes 

fR(x(t)) = f(x(t))- Ax(t) (9.148) 

thus, the nonlinear function can be expressed as a sum of the linear function 
and the nonlinear residual function as 

f(x(t)) = Ax(t) + f R(x(t)). 

From the definition of the Jacobian of f, it follows that 

lim [lifR(x(t))IIJ 
llx(t)ll ~ 0 llx(t)!l = O. 
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Therefore, since f(O) = 0, then Equation 9.148 can be regarded as a Tay-
lor expansion of the nonlinear function about the origin and that as x(t) 
approaches this origin, the residual function becomes negligible so that the 
linear function Ax(t) approximates the nonlinear f(x(t)), i.e., 

f(x(t)) = Ax(t) 

thus Equation 9.147 can be written as 

x(t) = Ax(t), 

where 

A= [of(x(t))J . 
ox(t) x(t)=x(to)~o 

The same approach can be used (with some slight modifications) for non-
autonomous systems. 

Now the Lyapunov's linearization method defines the conditions under 
which the linearized model can be used in place of a nonlinear system. It 
is summarized in the following theorem. 

Theorem 9.4 Consider a nonlinear system x(t) = f(x(t)) as linearized at 
the origin by x(t) = Ax(t) where A is the Jacobian matrix of f(x(L)) and 
is bounded. There are three possibilities for the relationship between the 
nonlinear system and the linear approximation: 

(a) If the linear model is strictly stable, then the equilibrium po·int of the 
nonlinear syst.em f(x(t)) at x(t0 ) = 0 is also s/.able 

(b) If the linear model is unstable, then the equilibriurn point of the non-
linear systcrn is also unstable. 

(c) If the linearized system is marginally stable, then no conclusion can 
be made on the stability of the equilibrium of the nonlinear system f(x(t)). 

Based on this theorem, it is evident that one can easily determine the 
stability of the nonlinear system by studying the linearized model, provided 
that the lineari~ation is carried out at the origin. 

Example 9.1 Consider the system x(t) = f(x(t)) where X= [xl x2]T and 
f(x(t) = [h(x(t) h(x(t)JT such that 

It is required to get a linearized nwdel at X = [0, o]Y and determine whetheT 
the equilibrium x = 0 for the nonlinear system f(x(t)) is a stable equilib-
rium. Replace h (x1, x2) = -2x1 + x2 + x1x2 and redo the problem. 
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Solution 9.1 This is a 2 x 2 system whose Jacobian matrix is 

so that at x = 0 it follows that 

A=[O OJ -1 -1 

whose eigenvalues are 0, -1. Clearly, the linearized system will be marginally 
stable, in which case, one cannot say anything about the stability of the non-
linear system f(x(t)). 

If the same problem is redone using h (:r 1, :c2 ) = -2x1 + x 2 + ::c 1 :r·2 , then 
the Jacobian of the nonlinear system at the origin becomes 

[ -2 1 ] 
A= -1 -1 ' 

whose eigenvalues are (-~ + ~iJ3, -~- ~iJ3). Since the real part of the 
e·igenvalucs ·is negative, then this system is asymptotically stable. 

9.9.4.3 Lyapunov's Linearization in Feedback Stabilization 

In this section the usefulneso; of Lyapunov's linearization method in the 
stabilization of nonlinear systems is illustrated. Concentration will be fo-
cused on the autonomous system for reasons given earlier. Further details 
of the material covered in this section arc found in later sections on the non-
linear control design. At this time, only an insight into the applicability of 
the linearization method is given. 

Consider an autonomous control system described by 

:X:(t) = f(x(t), u(t)) 

where f : IR.n x IR.m -+ IR.n. In the control design, the objective is to obtain 
a feedback control law of the form 

u(t) = g(x(t)) 

such that the equilibrium of the resulting closed-loop system 

x(t) = f(x(t), g(x(t))) 
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becomes asymptotically stable. A simple approach to the solution of this 
problem is by establishing a linear function of the Jacobians A and B with 
respect to x and u respectively at the origin, when no control effort u is 
applied, i.e., 

A= [Df] 
OX x=O,u=O 

B = [Df] 
Du x=O,u=O 

It will be seen that, since 

[ df] = [~~] dx + [~~] du 

= Adx+Bdu 
(at the origin) 

then the matrices A and B correspond to the plant and input matrix of a 
linearized system 

x(t) = Ax(t) + Bu(t) 

whose control law was studied in Chapter 7, and is 

u(t) = -Kx(t) 

so that 

x(t) = (A- BK)x(t). 

Thus, the only condition required for the stabilization of this system is 
selection of the gain matrix K so that the eigenvalues of the closed-loop 
matrix (A- BK) have negative real parts. 

9.9.4.4 Lyapunov's Direct Method 

The previous section introduced what is known as Lyapunov's indirect 
method of stability analysis. Basically, as it was shown, this method is 
based on the power series expansion of the nonlinear function that describes 
the dynamics of the system in question. Because of the inherent error asso-
ciated with the truncation of the approximation of nonlinear functions to 
linear functions, the indirect method does not attract much favor in most 
applications. This section presents the second Lyapunov method, known 
as Lyapunov's direct method of nonlinear analysis. The direct method is 
based on a physical observation that when the total mechanical (or electri-
cal) energy of any physical system is continuously dissipated, the system 
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will eventually settle down to an equilibrium point. Since the energy is a 
scalar quantity, it turns out that, according to Lyapunov's direct method, 
the stability of any system can be established by examining the variation 
of a single scalar function, known as the energy function or the Lyapunov 
function, which is a generalization of the total mechanical energy of the sys-
tem. In total, the method is summarized in three basic theorems: the basic 
stability theorems, asymptotic stability theorems, and instability theorems. 
Before the theorems are explained in detail, a discussion on the Lyapunov 
functions is given. As a general rule pertaining to Lyapunov's theory, ma-
turity in mathematics is assumed. 

9.9.4.5 Energy Functions 

To get a clear meaning of Lyapunov's energy functions and their use 
in stability analysis, consider a simple second-order nonlinear mechanical 
system composed of a nonlinear damping element and a nonlinear spring 
so that its dynamics can be written as 

x=f(x,x) 
B. 2 k1 2 ko =--x --x --x 
m m m (9.149) 

or simply 

(9.150) 

The total mechanical energy of such a system, which is the sum of its kinetic 
energy and potential energy, is given by the equation 

V(x) = ~mx2 +lax (k1y2 + koy)dy 

1 .2 1 3 1 2 = -mx + -k1x + -kox . 
2 3 2 

(9.151) 

Obviously, by studying this equation, it is possible to establish properties 
of this system, with knowledge from the previous discussion, that at the 
equilibrium point (x = 0, x = 0) this energy function will be zero. This 
observation implies that the asymptotic stability, which is concerned with 
the convergence of the system when disturbed from the equilibrium point, is 
related to convergence of this energy function to zero while the exponential 
stability is related to the rate at which the energy function decreases toward 
the equilibrium position. 

The time derivative of the energy function is given by 
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and by the dynamics equation, 

... B" 3 k 2 . k . mXX = - X - '1X X- QXX. (9.152) 

The rate of energy dissipation becomes 

V(x) = -Bx3 - k1x 2i:- koxi: + (k1 + kox)i: 

= -Bi:3 , (9.153) 

which indicates that, as the system is disturbed from some initial condition, 
it will dissipate energy through its damping element at a rate V(x) = -Bx3 

until this rate is zero, i.e., x = 0. 
Now, for :i: to be zero, the spring force must be also zero, calling for x 

to be zero. This simple analysis eventually leads to the conclusion that the 
system will eventually settle down to an equilibrium point as predicted by 
asymptotic: stability requirements. In short, this has shown that the system 
is asymptotically stable. Using the same reasoning, the instability of the 
system can be established if the energy function is such that it is growing 
up with time. 

To some extent, this discussion has not only acted as an eye-opener but 
also clarified to some extent the meaning and use of energy functions in es-
tablishing the stability of the system. Lyapunov's direct method follows an 
approach that draws conclusions about the behavior of complex systems. 
Having seen the use of energy functions, the discussion gives in-depth gen-
eral properties of the energy functioml and the selection of such functions 
in dealing with complex systems. 

9.9.4.6 Properties of the Energy Function. 

Quick examination of the energy function just developed in the previous 
section shows two main properties. The first property, which is associated 
with the system dynamics is that, if the state variables x, x vary according 
to the system dynamics equation, then the function will be continuously 
monotonically decreasing. The second property is concerned with the en-
ergy function itself. If the state :i:, x is close to zero, then for all .i:, x, 
V(x) will be strictly positive unless i; and x are zero. These are the two 
main properties of the energy function that are adopted for use by Lya-
punov's direct method. Basing on this eye-opener, the next discussion will 
concentrate on these two properties. 

In simple terms, a positive definite function may be viewed as one that 
is always positive for any value of its arguments. However, this simplistic 
definition is not truly enough to explain the definiteness of the function. 
A more accurate mathematical definition of the positive definiteness of 
functions classifies them as being either local or global. 
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Definition 9.1 A scalar function V(x) where V : JR.n -+ JR. is said to be 
locally positive definite ifV(O) = 0 and in the neighborhood ofx = 0 where 
x =/= 0 the function is such that V(x) > 0. If, however, when V(x) has such 
properties as V(O) = 0 and that V(x) > 0 for the whole state-space, then 
V ( x) is said to be globally positive definite. 

Essentially, this definition means that the function V(x) has a unique 
minimum at the origin. A geometrical interpretation of this definition call 
be made by observing the plots of V(x) in the x-space. In a two-dimensional 
phase plane, the plot of V(x) is presented by level curves that are a set of 
closed non-intersecting contour curves surrounding the origin, while in a 3-
D space, V(x) is presented by an open surface which looks like an upward 
cup. 

Obviously, one can easily treat the contours as the horizontal section of 
the 3-D cup projected in a 2-D plane. More importantly to note, however, 
is that this definition of positive definiteness is still not sufficient, as one 
should indicate the bound of the magnitude of the state vector for which 
the energy function remains positive definite. This is consolidated into the 
definition: 

Definition 9.2 If a contin1W1LS function V(x) where v· : JR.n -+ JR. is such 
that V(O) 0 and V(x) > 0, vx =/= 0, it becomes positive definite function 
if there exists some constant r > 0 such that 

min 
llxll > r V(x) > 0 (9.154) 

Together vvith these concepts of local and global positive definiteness of 
continuous function are concept" of local and global negative definiteness 
as well as semi-definiteness. The energy function becomes negative definite 
if-V(x) is positive definite. Semi-definiteness is a situation in which there 
is a possibility for this function to be zero. 

Example 9.2 Examine the definiteness of the following function 

V( ) 2 2 . 2 
X = X 1 -\- x 2 -1- Sill x 3 (0.155) 

Solution 9.2 The first condition to be examined is when x = 0 then 

V(O) = 0 

and that for x =/= 0 and lx31 < 1r it follows that 

~V(x) > 0. 

Thus, it can be concluded that V(x) is locally positive definite. However, 
closer examination shows that when x = [0 0 1rjT it will also give 
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V(O) = 0 hence making it not globally positive definite. This concludes that 
the given function is locally (in the vicinity of the origin) positive definite 
but not globally positive definite. 

So far, the energy functions that map the state vector into a scalar have 
been discussed in cases where the system is autonomous. However, the 
possibility for an energy function W(t, x) that maps both the state vector 
and time into a scalar for a non-autonomous system, i.e., W : IR+ x :IRn ---+ 

R These energy functions can also be defined and treated using similar 
approaches as for autonomous systems, only with very slight modifications 
that cater for the presence of the time element in the function. 

Definition 9.3 A continuous function W ( t, x) where W : IR+ x JE.n ---+ lR 
for x E JE.n is a local positive function if and only if W(t, 0) = 0, 'lit and 
there exists a local positive definite function V(x) where V : JE.n ---+ lR such 
that in the neighborhood of x = 0, 

W(t, x) 2: V(x) 'lit 2: 0 (9.156) 

If, howeveT, 

W(t,x) 2: V(x) 'lit 2: 0 '1/x E JE.n (9.157) 

the function becomes a globally positive definite function. 

This definition shows the close relationship between the energy function 
for autonomous and non-autonomous systems. In general, energy func-
tions for non-autonomous systems can be regarded as a generalization of 
an energy function that includes those for autonomous systems 

Example 9.3 Discuss the definiteness of the following function 

W(t, x) = (t 2 +I+ 2)(xi + x~ + x~) 
Solution 9.3 It can be seen that if 

then 

so that 

W(t, x) = (t2 + t + 2) V(x) 

V(O) = 0 

W(t,O) = 0. 
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For any x E ~n let 

V(x) = K 

where K is some scalar value so that 

W(t, x) = (t2 + t + 2)K. 

Since 

Vt ?:. 0 

then 

W(t, x) > V(x). 

Hence, the function is a globally positive definite function. 

9.9.4.7 Decreasing Functions and the Derivative of the Energy 
Function 

Since the energy function for a non-autonomous system can equally be 
treated like an autonomous system, most of the discussion in this section 
will be based on non-autonomous system energy functions, which have been 
seen to be the generalization of autonomous energy function. All resnlts 
obtained under this discussion so far apply well with the autonomous energy 
functions. 

Suppose that the energy function W( t, x(t)) is continuously differentiable 
with continuous partial derivatives with respect tot, and x;, i = 1, 2 · · · n. 
Then the derivative of W(t,x(t)), with respect tot is 

dW(t,x(t)) _ 8W(t,x(t)) n W( ( ))'() dt - Ot + V x t, X t X t . 

Suppose further that x(t) satisfies the differential equation that describes 
the system dynamics given as 

x(t) = f(t,x(t)) Vt ?:. 0 

then the time derivative of W(t,x(t)) with respect tot becomes 

dW(t,x(t)) = 8W(t,x(t)) n W( ( ))f( ( )) dt Ot + V x t, X t t, X t . (9.158) 

This derivative is known as the derivative of the energy function along the 
system trajectories and is formally contained in the following definition. 
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Definition 9A If W : IR+ x !Rn --+ lR is coni'inuously differentiable with 
respect to all of its argument.s, and v x W is the gradient of W with respect 
to x, then the function W : IR+ x !Rn --+ IR, called the derivative of W along 
the system trajectories, is defined by 

aW(t, x(l)) . 
x(t)) = at + Y'xW(t,x(t))j(t.,x(t)). 

Note that. for an autonomov.s system 

aW(t,x(t)) = 0 at . 

Hence, 

W(t,x(t)) = V'JVV(t,x(t))f(t.,x(t)). (9.15D) 

This derivative reflects the time rate at which the energy function de-
creases toward the origin. Its use in nonlinear systems analysis will be 
shown shortly. So far, all energy functions have been treated as Lyapunov 
functions. In essence, this is an incorrect assumption because not all energy 
functiom; arc indeed Lyapunov functions. A Lyapunov function i::; an en-
ergy function with decreasing properties, i.e., it should be decreasing with 
time. As such, an energy function qualifies to be a Lyapunov function only 
if its time derivative is less than zero, which indicates the decreasing en-
ergy. Geometrically, the Lyapunov function can be seen as a family of the 
energy functions that at some given state will be pointing down toward the 
inverted cup of the energy surface. The formal clefinhion of the Lyapunov 
function i;-; given as follows: 

Definition 9.5 If in the vicinity of the equilibrium point, the energy func-
tion W ( t, x( t)) is positive definite and has continuous partial derivatives, 
and if its time derivative along any of the state trajectories is negative 
semi-definite, i.e., 

TV(t, x(t)):::; 0 (9.100) 

then the energy function W ( t, x( t) is said to be a Lyapunov function for the 
system. 

9.9.4.8 The Concept of Invariant Sets 

The derivative of the energy function along the system state trajectory is 
a very important quantity, as will be shown shortly by the Lyapunov the-
orems, in determining the asymptotic stability of a system, provided that 
it is negative definite. However, in some cases, this quantity may become 
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negative semi-definite, in which case it becomes less useful in stability anal-
ysis. To be able to get around such situations, the concept of an invariant 
set is introduced together with the invariant set theorems. In general, the 
invariant sets are groups of state vectors in the state-space for which the 
system trajectory is indefinitely confined for some system dynamics. 

Definition 9.6 If a system dynamics is described by a nonlinear differen-
tial erruat'ion 

x = f(t,x(t)) 
'it 2:: 0, X E JFtn 

with solu.tion s(t,x(t0 )), and if there exists a setlvf ~ JR" such lhatfor each 
x(t0 ) EM there is a /0 E !Ft+ for which 

s(t,x(to)) EM 'it 2:: to (9.161) 

then the set M is called an invariant set of the differential equation that 
describes the system dynamics. 

In simple words, this definition implies that if M is an invariant set, then 
every system trajectory that starts from some point in M remains there 
for all future time. Invariant sets represent a collection of state vectors 
that are solutions ( or approximate solutions) of the nonlinear differential 
equation of the system. With this view, every equilibrium point or limit 
cycle, and even the whole state-space can be viewed as invariant sets, how-
ever, for analytical purposes, the whole state-space doe::i not lead to useful 
conclusions, hence it is known as a trivial invariant set. 

As mentioned earlier, invariant sets are very powerful in nonlinear system 
analysis when the cmcrgy function fails. The application of invariant sets in 
such problems is contaiued in the popular invariant set theorems, which can 
either be local or glolml. The local invariant set theorem will be discussed 
in more detail before extending the concepts therein to the global invariant 
set theorem. 

Local Invariant Set Theorem. 

• For a continuous nonlinear system 

x = f(t,x(t)) 

'it 2:: 0, X E JFtn, 

let vV ( t, :c( t)) be associated scalar energy function with contimwus 
partial derivatives. If for some r > 0 the reg'ion B,. defined by 

W(t,x(t)) < r 
'it 2:: 0 
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is bounded and 
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W(t, x(t)) <:: 0 

Vx E Br 

and R <:;: Br is a set of all points within B, where W ( t, x( t)) = 0 and 
if M is the largest invar'iant set in R (i.e., the union of all invariant 
sets in R) then every solution x(t) origination in Br tends to Nf as 
t -HXJ 

This local invariant set theorem presents an alternative description of the 
system asymptotic stability if the set M consists only of the equilibrium 
point, as will be shown shortly, One of the major concerns that could 
attract some attention in the application of invariant sets in Lyapunov's 
theorems is the method by which to establish invariant sets for a given 
system, The following discussion explains this problem by first defining the 
limit sets. 

Definition 9. 7 Suppose that a nonlinear system 

x=f(t,x(t)) 
Vt 2': 0, x E rn;_n 

has a solution trajectory s(t,x(t0 )) where x(t0 ) E rn;_n, t 0 E 1Ft+. If there 
exists a sequence { 1;}~ 1 E [to, oo] 3 t; --> oo and for some point p ElFtn 

t,~~~ liP- s(t;,x(to))ll = 0 (9.162) 

then p is called the limit point of the trajectory, A set of such limit points 
n(x(to)) is called the limit set of the trajectory. 

This definition simply states that, for some solution trajectories, there 
exists some points p called the limit points such that for some number 
E > 0, there is a t E [0, oo] such that 

liP- s(t,x(to))l! < E, 

which means that the distance of p from the trajectory is bounded. The 
limit set for a given system can be either bounded or unbounded, depending 
on the trajectory itself. If the trajectory is bounded, then the limit set 
will also be bounded, otherwise it becomes unbounded. If the limit set is 
bounded and the distance between a point X and the limit set f2 is defined, 
such that 
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then the trajectory s(.,x(t0 )) is bounded for x(t0 ) E lR11 , t 0 E JR+ then 

t:':,d[s(t,x(to)),D(x(to))) = 0, (9.163) 

which simply means that the distance between the trajectory and the limit 
set converges to zero, or the trajectory falls in the limit set. 

Having clarified the relationships between the system trajectories, it is 
possible to establish the invariant sets for a given system. Generally, if the 
nonlinear system 

x = f(t, x(t)) 

\ft ~ 0, X E JRn 

is periodic (i.e., has limit cycles) and the trajectory s(., x(ta)) is bounded, 
then the limit set D(x(t0 )) is an invariant set of this system. For au-
tonomous systems of the form 

x = f(x(t)) (9.164) 

the invariant sets enclose the system domains of attraction, i.e., the area 
in the state-space in which the system trajectories converge, if the system 
has any. 

Definition 9.8 If 0 is an attractive equilibrium of the autonomous system, 
the domain of attraction D(O) is defined as 

D(O) = {x(O) E lRn: t:':,s(t,x(O)) _, 0} (9.165) 

It will be recalled that domains of attraction are the areas that contain 
the stable equilibria for the system trajectory. 

9.10 Design of Nonlinear Control Systems 

9.10.1 Feedback Linearization Methods 

These methods are an extension of the linear feedback methods. In this 
section the basic principles of system linearization are discussed. The em-
phasis will be on the methods for system linearization about equilibrium 
points so that the linear feedback control can be applied. The approach 
begins with the more familiar linearization techniques. 
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9.10.2 Introduction to Adaptive Control 

In some control systems, certain parameters are either not constant or 
vary in an unknown manner. One way of minimizing the effects of such 
contingencies is by designing for minimum sensitivity. If, however, param-
eter variations are large or very rapid, it may be desirable to design for the 
capability of continuously measuring them and changing the compensation 
so that the system performance criteria are always satisfied. This is called 
adaptive control design. 

Some nonlinear systems are difficult to model for several technical rea-
sons. Modern approaches to such systems and even to those that can be 
modeled with uncertainty is to use adaptive control strategies. Under such 
strategies the controller is made to tune itself with the nonlinear and even 
time-varying plant dynamics producing the required control action. The 
most popular methods under this scheme are the Self Tuning Regulator 
(STR) and Lhe Model Reference Adaptive Controller (MRAC). This section 
discusses the basics of these adaptive control strategies. The Model Refer-
ence Adaptive Controller requires the presence of the model that represents 
the required dynamics. The controller works by adapting the parameters 
in accordance with adaptation of the difference between the actual system 
dynamics and the model reference. 

9.10.3 Introduction to Neural Control 

The increasing demand for high precision control over a wide range of 
operating regions and the emergence of new computational methods us-
ing neural networks that abstract parallel information-handling features of 
the human brain with massively interconnected processing elements, neural 
networks are emerging as modern adaptive controllers. The main attrac-
tive features of artificial neural networks include the self-learning and dis-
tributed memory capabilities. The self learning features of neural networks 
are applied in learning the system dynamics, thereby tuning the controller 
parameters accordingly. Though most of the theory of neural controllers is 
still in its infancy, this section will provide an overview and the basic ideas 
behind ncurocontrol. 

9.10.4 Introduction to Robust Control 

A control system designed using the methods and concepts of the preced-
ing chapters assumes knowledge of the model of the plant and controller 
and constant parameters. The plant model will always be an inaccurate 
representation of the actual physical system because of the following issues: 

e Parameter changes 



Advanced Control Systems 759 

• Umnucleled dynamics 

s U nmodeled time delays 

• Changes in the equilibrium point (operating point). 

• Sensor noise 

• Unpredict.cd disturbance inputs 

Robust control is an approach to handling model uncertainties associ-
ated with time varying systems, both linear and nonlinear. This strategy 
happens to be a special case of adaptive control, the robust. The goal of 
robust systems design is to retain assurance of system performance in spite 
of model inaccuracies and changes. A system is robust when it has ac-
ceptable changes in performe:wce clue to model changes or inaccuracies. A 
robust control system exhibits the desired performance despite the presence 
of significant plant (process) uncertainty. 

The system structure that incorporates potential system uncertainties 
is shown in Figure 9.30 This model includes the sensor noise N(s), the 
unpredictecl disturbance input D(s), and a plant G(s) with potentially 
unmodelccl dynamics or parameter changes. The unmodeled dynamics and 
parameter changes may be significant or very large, and for these systems, 
the challenge is to create a design that retains that desired performance. 

R(s) 1---·---1 

Input Gp(s) 

FIGURE 9.30 
Robust Control System Design 

D(s) 
Disturbance 

+j Plant Y(s) 
+0-~G(~s):f__;_:O~utp~u-t 

Designing highly accurate systems in the presence of significant plant un-
certainty is a classical feedback design problem. The theoretical bases for 
the solution of this problem dates hack to the work of H.S. Black and II.W. 
Bode in the early 1930s, when this problem was referred to as the sensitiv-
ities design problem. A significant amount of literature has been published 
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since then regarding the design of systems subject to large plant uncer-
tainty. The designer seeks to obtain a system that performs adequately 
over a large range of uncertain parameters. A system is said to be robust 
when it is durable, hardy, and resilient. 

A control system is robust when (i) it has low sensitivities, (ii) it is stable 
over the range of parameter variations. and (iii) the performance continues 
to meet the specifications in the presence of a set of changes in the system 
parameters. Robustness is the sensitivity to effects that are not considered 
in the analysis and design phase-for example, disturbances, measurement 
noise, and unmodeled dynamics. The system should be able to withstand 
these neglected effects when performing the tasks for which it was designed. 

For small parameter perturbation the differential sensitivities and root 
sensitivity are used as a measure of robustness. System sensitivity is defined 
as 

where a is the parameter, and T the transfer function of the system. Root 
sensitivity is defined as 

STi = 8ri 
a aaja 

When the zeros ofT(s) are independent of the parameter a, it can be shown 
that 

n 
S T _ '\' sr; 1 
a--L.__. "'( )' 

i=l S-f- Ti 

for an nth-order system. For example, if there is a closed-loop system, 
as shown in Figure 9.31, where the variable parameter is a, then T(s) 
1/[s +(a+ 1)], and 

T -a S" =----
s+a+1 

Furthermore, the root is r 1 =+(a+ 1), and 

-S~' =-a 
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R(s) Y(s) 

FIGURE 9.31 
Closed-Loop System (Variable Parameter) 

9.11 Problems 

Problem 9.1 A nonlinear system is described by the following eq'uations, 

XI = 2xi + 3xi - 2xz + u 

±z = xz - 0.25(sin XI +cos x2) + u. 

(a) With u = 0 plot the state-space trajectories in the neighborhood of the 
origin defined by lxii ~ 1, lxzl ~ 2. 

(b) Using Lyapunov's first method, linearize the above system about XI = 
x 2 = u = 0, and assess the stability of this linearized system. 

Problem 9.2 Investigate whether the following functions V ( x) are poS'iiive 
definite. 

(a) V(x) = 2xi + 2xiX2 + 4x~- 4xi:I:;3 + 5:r~ 

(b) V(x) xi+ 4xixz + 5x~- 6xiX3- 8xz:r:3 + 8x§ 

Problem 9.3 Construct a Lyapv.nov function for the system 

±1 = xi + x~ - XI 

±z = xi - x~ - x2 

and use it to investigate the stability at the origin. State the domain of 
attraction if the system is asymptotically stable. 

Problem 9.4 A nonlinear system is described by 

. 3 2 
:1:1 = XI + Xz - (xi + XIXz) 

Xz = Xz -XI - (x~ +XIX~) 

if r 2 = :d + x§, show that the system has a limit cycle at T = 1. 



762 Design and Analysis of Control Systems 

Problem 9.5 For the following system., determine the equilibrium points 
and discuss the stability of each equil·ibrium using Lyapunov 's (indirect) 
linearization method. 

. 2 1 
XI =XI- XI - 2X1X2 

' 2 1 
X2 = X2 - X 2 + 2X1X2. 

Sketch the flow of trajectories in the (xi, xz) phase plane and classify each 
equilibr·ium point (node, saddle, etc) 

Problem 9.6 Sketch the isoclines for the equations: 

(a) 

(b) 

(c) 

dy ( ') - = xy y -2 
dx 

Problem 9. 7 The equations describing the motion of an earth satellite in 
the orbit plane are 

d2r_r(d8) 2 

dt2 dt 

A satellite is nearly in a circular orbit determined by r and ~~ = w. An 
exactly circular orbit is defined by 

r = r u = constant, w = W 0 = constant. 

Since dr o = 0 and dwa = 0, the first differential equation is elim·inated for 
dt dt 

k2 
a circulaT orbit. The second equation reduces to r~w; = - 2 . Find a set of 

pro 
linear equations that approximately desrribes the diffcn:nces. 

Problem 9.8 Show that the describing f7mction for the sat·amtion element 
in the previous problem is given by 
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Problem 9.9 Show that equation ~:~ = f ( x, ~~) can be equivalently 

described by a pair of first-order differential equations. 

Problem 9.10 Show that the phase plane trajectory of the solution of the 
differential equation 

d2x 
dt2 +X= 0, 

with initial conditions x(O) = 0 and ±(0) = 1, is a circle of unit radius 
centered at the origin. 

Problem 9.11 Determine the equation of the phase plane trajectory of the 
differential equation 

d2x dx 
dt2 + dt = o, 

with the initial conditions x(O) = 0 and ±(0) = 1. 
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Appendix A 

Laplace and z-Transforms 

A.l Properties of Laplace Transforms 

Number Laplace Transform Time Function Comment 
- F(s) f(t) Transform pair 

1 o:F1(s) + f]F2(s) o:fl(t) + f]f2(t) Superposition 

2 F(s)e-s>. f(t- >.) Time delay 

3 1 FC) lal a 
f(at) Time scaling 

4 F(s +a) e-atf(t) Frequency shift 

5 
sm F(s)- sm-l f(O) 

J(ml(t) Differentiation 
_ 8 m-2 j(O) _ ... _ jCm-l)(O) 

1 J f(t,)dt, 6 -F(s) Integration s 

7 F1(s)F2(s) !J(t) * h(t) Convolution 

8 lim sF(s) 
S-+00 

f(o+) IVT 

9 lim sF(s) lim f(t) FVT 
s-+0 t-+oo 

10 2!j f~J: F1(()F2(s- ()d( h (t)f2(t) Time product 

11 
d 

- rl.q F(s) tf(t) Multiply by time 

765 
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A.2 Table of Laplace Transforms 

Number F(s) f(t),t>O 
1 1 fm 2 1/s 
3 1/s2 t 
4 2!/s3 t2 

5 3!/s4 t3 
6 m!/sm+l tm 

1 e-at 7 --
s+a 

1 te-at 8 (s+a) 2 

9 
1 2_t2e-at 

(s + a)3 2! 
1 1 tm-le-at 10 (s + a)m (m- 1)! 
a 1- e-at 11 

s(s +a) 
a 1 

12 
s2(s +a) 

- (at - 1 + e-at) 
a 

13 
b-a e-at_ e-bt 

(s+a)(s+b) 
s 

(1 -at) e-at 14 
(s + a)2 

15 
a2 

1- e-at (1 +at) 
s(s + a)2 

16 
(b - a)s be-bt - ae-at 

(s+a)(s+b) 
a 

17 s2 t a2 
sin at 

18 s2 + a2 cos at 
s+a e-at cosbt 19 

_(s+at2+b2 
e-at sin bt 20 

(s + a} 2 + b2 

21 
a + b2 

1 - e-at (cos bt + ~ sin bt) 
s [(s + a)2 + b2)1 
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A.3 Properties of Z-Transforms 

1. Definition. 

2. Inversion. 

3. Linearity 

4. Time shift 

F(z) = L-~0f(kh)z-k 

1 f(kh) = -2 . § F(z)zk- 1dz 
7fZ 

Z {af + ,Bg} = aZf + ,BZg 

Z{q-n!} = z-n F 
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Z{qnf} = zn(F- Fl} where F 1 (z) = L-j:;JJ(jh)z-j 
5. Initial-value theorem 

f(O) = lim F(z) 
Z-->00 

6. Final-value theorem 
If (1 - z- 1 )F(z) does not have any poles on or outside the unit circle, then 

lim f(kh) = lim(1- z- 1 )F(z) 
k--+CX> Z---+ 1 

7. Convolution 
Z{f x g} = Z {L-~=of(n)g(k- n)} = (Zf)(Zg) 
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A.4 Table of Z-Transforms 

F(s) =Laplace transform of f(t), F(z) = Z-transform of f(kT) and 

f ( t) = 0 for t = 0 

Number F(s) f(kT) F(z) 
1 1, k = 0; k # 0 1 
2 1, k = k0 ; k ;f. k0 

z-ko 

3 
1 1(kT) z - --
s z-1 
1 

kT 
Tz 

4 
s2 (z- 1)2 

1 ~(kT)2 T2 [ z(z + 1)] 5 
s3 2! 2 (z- 1)3 

6 
1 ~(kT) 3 T 3 [z(z2 +4z+ 1)] 

s4 3! 6 (z-1)4 

. (-1)m-1 . ( -1)m-1 
1 hm x hm x 

7 - a.-0 (m- 1)! a.-o (m- 1)! 
sm ( 0m-1 ) ( 8m-1 z ) -akT 

oam-1 e oam-1 Z- e-aT 

8 
1 e-akT z -- z- e-aT s+a 

1 kTe-akT Tze-aT 
9 

(s + a)2 (_z _ e-aT)2 



Appendix A: Laplace and Z-Transform 769 

A.5 Table of Z-Transforms (contd.) 

No. F(s) f(kT) F(z) 

10 
1 ~ (kT)2 e-akT T~ - T (z + e al) 

(s + a)3 
-e a z 

2 2 (z- e-aT)3 
( -1)m-1 

1 X ( -1)m-1 ( 0m-1 z ) 11 (m -1j' 
(s + a)m ( 8m- -akT) (m -1)! aam-1 Z - e-aT 

aam-1 e 

12 
a 1 _ e-akT z(1- e-aT) 

s(s +a) (z- 1)(z- e-aT) 
z[Az+B] 

a 1 a(z- 1)2(z- e-aT) 13 82(8 +a) -(akT- 1 + e-akT) 
a A = (aT - 1 + e-a ) 

B = (1 - e-aT -aTe-aT) 

14 
b-a e-akT _ e-bkT (e-aT _ e-bT)z 

(s+a)(s+b) (z- e-aT)(z- e-bTi 

15 
s (1 - akT)e-akT z [z- e-aT(l +aT) 

(s + a)2 (z- e-aTr 
z[Az+B 

16 
a2 

1 - e-akT (1 + akT) (z- 1)(z- e-aT)2 
8(8 + a)2 A = (1 - e-aT -aTe-aT) 

B = e-2aT -e-aT+ aTe-aT 

17 
(b- a) 8 be-bkT _ ae-akT z [z(b- a)- (be-aT- ae-bT)] 

(s + a)(8 +b) (z- e-aT)(z- e-bT) 

18 
a sinakT 

zsinaT 
82 + a2 z2- (2cosaT)z + 1 

19 
8 cosakT z(z- cos aT) 

82 + a2 z 2 - (2 cos aT)z + 1 

20 
8+a e-akT cos bkT z(z- e-aT cos bT) 

(s + a)2 + b2 z2 - 2e-aT(cosbT)z + e-2aT 

21 
b e-akT sin bkT ze-aT sinbT 

(s+a)2 +b2 z2 - 2e-aT (cos bT)z + e-2aT 
z(Az +B) 

a2 + b2 
(z- 1) [z2 - Cz + e-2aTJ 

1 - e-akT X (cos bkT A= 1- e-aT cosbT 

22 s [ ( s + a )2 + b2J a . ) -~e-aT sin bT +t;smbkT b a 
B = e-2aT +-e-aT sinbT 

b 
-e-aT cosbT 
C = 2e-aT(cosbT) 



http://taylorandfrancis.com


Appendix B 

MATLAB: Basics and Exercises 

MATLAB is an interactive high-level programming language for numerical 
computation and data visualization. It is used extensively for the design 
and analysis of control systems. There are many different toolboxes avail-
able that extend the basic functions of MATLAB into different application 
areas. In this Appendix the basic commands will be introduced and the 
reader will be familiarized with MATLAB. In addition, a number of ex-
ercises involving dynamic systems are provided. MATLAB is supported 
on Unix, Macintosh, and Windows environments. There are number of 
MATLAB websites that can be used to supplement this appendix. Univer-
sity of Michigan and Carnegie Mellon University support a very effective 
MATLAB tutorial through the following websites: 

http:/ /www.engin.umich.edu/groupfctm/index.html 

http:/ /hpme12.me.cmu.edufmatlab/html 

B.l Getting Started 

MATLAB is invoked by entering the command "matlab" at the computer 
system prompt or by clicking on the MATLAB icon, depending on the 
type of machine being used. Once started, MATLAB will clear the screen, 
provide some introductory remarks, and produce the MATLAB command 
prompt>>. For the most part, MATLAB commands are independent of 
the type of machine and operating system being used. However, the way 
that MATLAB interfaces with the computing environment varies dramati-
cally from machine to machine. As a result, use of features such as printing 
and command line editing are machine dependent. In order to exit from 
MATLAB type "quit" or ''exit "at the MATLAB prompt, followed by the 
return or enter key. 
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B.2 Creating MATLAB Files 

It is much more convenient to use MATLAB script files than to enter 
commands line by line at the MATLAB command prompt. A script file is an 
ASCII file (regular text file) that contains a series of commands written just 
as they would be entered at the MATLAB command prompt. Statements 
beginning with % are considered to be comments and are hence, ignored 
during execution. Each script file should have a name that ends with a 
".m" extension The script file (MATLAB program file) is then executed 
by typing the name of the script file without the ".m" extension at the 
MATLAB command prompt. For example, if the script file labl.m contains 
the following commands used to plot a sine curve: 

% MATLAB (Exercise!) 
% Plotting a simple sine curve 
t = 0 : 0.1 : 10; 
y = sin(2 * t); 
plot(t, y) 
Typing labl at the MATLAB command prompt will plot the sine curve. 

The file should be in the same directory as the MATLAB prompt. To verify, 
type ls at the MATLAB prompt to see that the file exists in the same 
directory. If not, then type cd directory_name to go the right directory. 
Once the MATLAB prompt is set, open another window to edit the text 
(script) file, i.e., enter the commands of the program that needs to be 
executed. The text file should be saved before running it at the MATLAB 
prompt. 

B.3 Commands 

MATLAB has many commands and a few are listed below along with 
their syntax. They are supplemented with examples and illustrations. 

B.3.1 Vectors 

For a row vector enter each element of the vector (separated by a space) 
between brackets, and set it equal to a variable. For example, to create a 
row vector a, enter the following in a MATLAB command window: 

>>a= [1 2 3 4 56 7] 
a= 

1234567 
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For a proper vector d, enter each element of the vector (separated by a 
semicolon) 

> > d = [ 1; 2; 3;] 
d= 

1 
2 
3 

Alternatively the following transpose command can be used to obtain a 
proper vector. 

>>d= (123]' 
To create a row vector with elements between 0 and 20 evenly spaced 

in increments of 2 the following command can be used (this method is 
frequently used to create a time vector): 

>> t = 0:2:20 

t= 
0 2 4 6 8 10 12 14 16 18 20 

Manipulating vectors is as easy as creating them. To add 2 to each 
element of vector a, the command takes the form: 

>> b = a+2 
b= 

3456789 
Now suppose, the sum of two vectors is required. The two vectors have 

to be of the same length, and the corresponding elements are simply added 
as shown below: 

>> c = a+b 
c =. 

4 6 8 10 12 14 16 

Subtraction of vectors of the same length works in exactly the same way. 

B.3.2 Functions 

MATLAB includes many standard functions. Each function is a block of 
code that accomplishes a specific task. Such MATLAB functions include 
the following: sin, cos, log, exp, and sqrt. Commonly used constants such 
as pi, and i or j for the square root of -1, are also incorporated. 

>> sin(pi/4) 
ans = 

0.7071 

To determine the usage of any function, type help function_name at the 
MATLAB command window. The function command facilitates the cre-
ation of new functions by the user. 
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B.3.3 Plotting 

It is easy to create plots in MATLAB. Suppose the task involves plotting 
a sine curve as a function of time. The task involves making a time vector 
and then computing the value of the sin function at each time value. It 
is important to note that a semicolon (;) after a command instructs the 
MATLAB engine not to display the results of that particular command. 
The sine curve is plotted as follows: 

>> t = 0:0.25:7; 
>> y = sin(t); 
>> plot(t,y) 
MATLAB will return the following plot. 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 

-0.8 

-10 2 3 4 6 7 

The plot command has extensive add-on capabilities. The title of the 
plot, labels of its axes, text and grids can be included to make referencing 
easy. The following commands can be used inside a MATLAB script file 
(file_name.m}, and when the file is run, the curve with its new features are 
produced: 

plot(t,y) 
title('Plot name, e.g., System Response') 
xlabel('Time [sec]') 
ylabel('y [m]') 
grid 
gtext('Put text on graph, e.g., sin(t)') 
MATLAB will return the following plot. 
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Plot name, e.g., System Response 

Put text on graph, e.g., sin(t) 

I ,., 
-0.2 

-0.4 

-0.6 

-0.8 

-1 0 2 3 4 6 7 
Time [sec] 

The grid command produces grid lines on the graph, and these can be 
used to compare plots. The command gtext allows text to be put on the 
graph. MATLAB provides crosswires in the graphics window that can be 
moved by the computer mouse to the desired location for the text label. It 
is important to note that the opening apostrophe in MATLAB commands 
must be like a 9 and not a 6 as in normal sentence construction. This is 
part of MATLAB syntax. 

B.3.4 Polynomials 

In MATLAB, a polynomial is represented by a row vector. To create 
a polynomial in MATLAB, each coefficient of the polynomial is entered 
into the vector in descending order. For instance, consider the following 
polynomial, 

The polynomial is entered in the following manner: 
>> X= [ 1 3 -15 -2 9] 
x= 

1 3 -15 -2 9 
MATLAB interpret a vector of length ( n+ 1) as an nth-order polynomial. 

Thus, if the polynomial is missing any coefficients, zeros must be entered 
at the appropriate places in the vector. For example, 

s4 + 1, 
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would be represented as: 
>>y= [10001] 
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The value of a polynomial can be found by using the polyval function. For 
example, to find the value of the above polynomial at s = 2, the following 
command is used: 

>> z = polyval((1 0 0 0 1], 2) 
z= 

17 
The roots of a polynomial can also be extracted. This is particularly 

useful for high-order polynomials such as 

s4 + 3s3 - 15s2 - 2s + 9. 

The roots are obtained by entering the command: 
>> roots([1 3 -15 -2 9]) 
ans = 

-5.5745 
2.5836 
0.7860 
-0.7951 

The product of two polynomials is found by taking the convolution of 
their coefficients. The function conv is engaged as follows: 

>>x=[12]; 
>>y=[148]; 
>> z = conv(x,y) 
z= 

1 6 16 16 
Dividing two polynomials is achieved by using the function deconv. It 

will return the result including the remainder. For example dividing z by 
y from above and leads to: 

>> [xx,R] = deconv(z,y) 
XX= 

12 
R= 

0000 
As expected, xx = x, and the remainder is 0. Addition of two polyno-

mials, that have the same order, is achieved by adding their corresponding 
row vectors. For example, if two polynomials x andy have the same order, 
then their sum can be obtained as follows 

>>z = x+y 

B.3.5 Matrices 

Entering matrices into MATLAB is similar to entering vectors except 
that each row of elements is separated by a semicolon (;) or a return key. 
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> > A = [1 2; 3 4] 
yields 
A= 

1 2 
3 4 

>>A= [1,2 
3,4] 

produces the same result. 
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Matrices in MATLAB can be manipulated in many ways. The transpose 
of a matrix is obtained using the apostrophe key. 

>> C =A' 
C= 

1 3 
2 4 

It should be noted that if A had been complex, the apostrophe would 
have produced the complex conjugate transpose. The transpose can also 
be obtained by just typing A' at the MATLAB prompt. 

Two matrices B and C can be multiplied together if the number of 
columns in B is equal to the number of rows in C. It is also essential 
to note that the order of multiplication for matrices matters. 

>> B = [1 0; 0 1]; 
>> A*B 
ans = 

1 2 
3 4 

A square matrix can be multiplied by itself many times by raising it to 
the necessary power. For example, 

> > A = [1 2; 3 4]; 
>> A~3 
ans = 

37 54 
81 118 

The inverse of a matrix is obtained as follows: 

>> inv(A) 
ans = 

-2.0000 
1.5000 

1.0000 
-0.5000 
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B .4 Printing 

Printing in MATLAB is machine dependent. 

Macintosh 

To print a plot or a m-file from a Macintosh, just click on the plot or 
m-file, select Print under the File menu, and hit return. 

Windows 

To print a plot or a m-file from a computer running Windows, just select 
Print from the File menu in the window of the plot or m-file, and hit return. 

Unix 

To print a file on a Unix workstation the following command can be 
entered: 

> lp -P<printer_name> file_name 
For example, if the name of the printer is lexlab2 and the file is test. m, 

then, 
> lp -Plexlab2 test.m 

Plots 

Plots can be printed by going to the file menu of the plot and clicking 
the print option. Another window will pop up, and the print option can 
be selected. Thus, the file will send to be printed by the default printer. If 
the objective is to save the plot and print it later, either of the following 
two commands can be used in the MATLAB command window soon after 
producing the plot. 

> > print ploLname. ps 
> > print -deps ploLname.eps 
Once saved the plot can be printed later or included as part of a text 

document. For example, in Unix the plot can be printed as follows: 
> lp -P<printer_name> plot..name.ps 

B.5 Using M-files in MATLAB 

In handling MATLAB files (m-files}, there are slight differences between 
the machine platforms. 
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Macintosh 

There is a built-in editor for m-files; The "New M-file" option can be 
chosen from the File menu. Other editors can be used but its important to 
save the files in text format and load them when MATLAB is invoked. 

PC Windows 

Running MATLAB from Windows is very similar to running it on a 
Macintosh. However, its important to note that the m-file will be saved in 
the clipboard. Therefore, it must be saved as file_ name. m 

Unix 

Two Unix windows must be opened: the MATLAB command window, 
and the file editing window. Both windows must be operating from the 
same directory. All the MATLAB commands are written into the script 
file "file_name.m" opened from the editing window. Unix editors include 
such programs as emacs and pico. For example a file can be opened and 
edited by first typing the following command in the editing Unix window: 

> emacs file_name.m 
When all the MATLAB commands have been written into file_name.m, 

the file can then be executed by typing the following command from the 
MATLAB command window: 

> > file_name 

B.6 Saving Workspace 
As has been discussed already, MATLAB commands can be typed di-

rectly in a MATLAB command window, or they can be edited into an 
m-file and then the file executed afterwards. When typing commands di-
rectly in the MATLAB window, the work being carried out can be saved 
into a file file_ name. m by using the diary command as follows: 

> > diary file_name.m 
>> A= [1 2; 3 4) 
A= 

1 2 
3 4 

>> B = [1 0; 0 1) 

B= 
1 0 
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0 1 
>>diary 
The command diary file_ name. m causes all subsequent prompt inputs 

and their outputs to be written into file_ name. m. The command diary off 
suspends that facility. 

B. 7 Getting Help in MATLAB 

MATLAB has fairly good on-line help that can be accessed as follows: 
> > help command _name 
It also important to notice that the value of a particular variable can be 

obtained at any time by typing its name. For example, 
>>A 
A= 

1 2 
3 4 

Also more than one command statement can be placed on a single line, 
by separating the statements by a semicolon or comma. If a variable is 
not assigned to a specific operation or result, MATLAB will store it in a 
temporary variable called "ans." 

B.8 Control Functions 

MATLAB has built-in functions to help in the design and analysis control 
systems. Given below are some of the functions 

(a) step 

This function produces the step response of a system, i.e., the system 
output due to a step input. It takes as arguments the state-variable matrices 
(A,B,C,D) from the linear system representation, 

The syntax takes the form 

x=Ax+Bu 

y=Cx+Du. 

>> step(A, u*B, C, u*D, iu, t); 
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The term, u, is the size of the step input (a constant), and iu indicates 
the number of inputs. The quantity, t, is a user-supplied time vector that 
specify the time interval over which the step response should be calculated. 
If it is not specified a default time interval is used. Given below is the 
MATLAB program that can be used to produce the step response for a 
car's cruise-control system. The input is a step force, u = 500N. 

A = (0 1; 0 -0.05]; 
B = (0; 0.001]; 
c = (0 1]; 
D = 0; 
step(A, 500*B, C, D, 1) 
title{'Cruise Control Step Response') 
This returns the plot shown below. 
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CD 6 
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(b) impulse 

Cruise-control Step Response 

10 20 30 40 50 60 70 80 90 100 
Time (sees) 

This function produces the step response of a system, i.e., the system 
output due to a step input. It takes as arguments the state-variable matrices 
(A,B,C,D) from the linear system representation, 

The syntax takes the form 

x=Ax+Bu 

y=Cx+Du. 

>> impulse(A, B, C, D, iu, t); 
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where the input is an impulse and iu indicates the number of inputs. 
The vector t is a user-supplied time vector that specify the time interval 
~ver which the step response should be calculated. Given below is example 
of MATLAB program that produces an impulse response: 

A = [-3 -2 ; 1 0]; 
B = [1;0]; 
C = [2 I]; 
D = 0; 
impulse( A,B,C,D,l) 
title('lmpulse Response') 
The following plot is obtained. 
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~ 
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Impulse Response 
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As shown in preceding examples, the state-variable matrices must be en-
tered before the step and impulse functions are used. Alternatively, the 
system transfer functions can be used to obtain system responses. MAT-
LAB also has built-in programs to convert between different models of 
dynamic systems, such as the state-variable matrix form and the transfer 
function form. For example, 

>> [num,den] = ss2tf(A,B,C,D) 

converts the system from the state-variable matrix form to the transfer 
function form. The impulse and step responses are then obtained as follows: 

>> step(num,den) 
>> impulse(num,den) 

Other commands that convert between models include the following 

>> [A,B,C,D) = tf2ss(num,den) 
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>> [z,p,k] = ss2zp(A,B,C,D) 
>> [A,B,C,D] = zp2ss(z,p,k) 
>> [A1,B1,C1,D1] = ss2ss(A,B,C,D) 

B.9 More Commands 
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1. inv(A) produces the inverse of a square matrix A. A warning message 
is printed if A singular or badly scaled 

2. loops repeat statements a specific number of times. 

The general form of a for statement is: 

for variable= expression, statement, ... , statement end 
The columns of the expression are stored one at a time in 

the variable and then the following statements, up to the 

end, are executed. The expression is often of the form X: Y, 

in which case its columns are simply scalars. For example: 

N =10 
for I= 1:N; 

for J = 1:N; 
A(I,J) = 1/(I+J-1); 

end 
end 

3. eye (identity matrices) 

eye(N) produces an N-by-N identity matrix. 

eye(M, N) or eye([M, N]) produces an M-by-N matrix with l's on 

the diagonal and zeros elsewhere. 

eye(size(A)) produces an identity matrix with the same size as A. 

4. rank (linear independence) 

If X is a matrix then 

k = rank(X) 
gives the number of linearly independent rows or columns of the ma-
trix. 
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B.lO LABWORK I 

L Conside• A ~ [ ~5 ~2 n , b m , c ~ [-II 0] 

(a) Suppose Ax = b, find x. 

(b) Suppose yA = c, find y. 

(c) G(s) = c(si- A)-1b, find G(O) and G(l). 

(d) Define eM = [ b Ab A2b). Find rank of eM 
(e) Now consider an arbitrary n x n matrix A and n x 1 vector b. 

Let eM = [ b Ab A 2b ... An-lb ). Write the script file that computes 
the rank of eM. 

2. Consider the function 

where 

H(s) = ry(s) 
d(s) 

ry(s) = s3 + 6.4s2 + 11.29s + 6.76 

d(s) = s4 + 14s3 + 46s2 + 64s + 40 

(a) Find ry(-12),ry(-10),ry(-8). 

(b) Find d(-12),d(-10),d(-8). 

(c) Find H(-12),H(-10),H(-8). 

3. Let Al be any n x m matrix and A2 be any p x q matrix. Create a 
function block(Al,A2) that generates the (n + p) x (m + q) block 
diagonal matrix 

[ Al 0 ] 
0 A2 ' 

where the of diagonal blocks have all elements equal to zero. Use the 
zeros command. 

4. For designing an automobile suspension, a two-mass system can be 
used for modeling as shown in the following diagram. 
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m2 yl 
ks b 

Year 
mr xl 

kw 
Road surface 

r 

Inertial reference 

The Quarter-Car Model 

This is called a quarter-car model because it comprises one of the four 
wheel suspensions. The car and wheel positions are denoted by y(t) 
and x(t) respectively. These displacements are from static equilibrium 
which corresponds to no inputs except gravity. 

(a) Draw the free-body diagram of this system, assuming one-dimensional 
vertical motion of the mass above wheel. 

(b) Write down the equations of motion for the automobile. 

(c) Express these equations in a state-variable matrix form (A,B,C,D) 
using the following state-variable vector, 

x(t) = [x ± y yf, 

and justify this choice of state variables. Note that the car and wheel 
positions, y(t) and x(t), are the two outputs of the car system while 
the input is the unit step bump r(t). 

(d) Plot the position of the car and the wheel after the car hits a "unit 
bump" (i.e. r(t) is a unit step) using MATLAB. Assume m 1 = lOkg, 
m2 = 250kg, kw = 500,000Njm, ks = lO,OOONjm. Find the value 
of b that you would prefer if you were a passenger in the car. 
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B.ll LABWORK II 
1. Given the matrices 

r1 0 2 1] 
0532 

A= 2114; 

4223 

x=[1351); y=[2143); z=[0789); 

evaluate 

(a) AB+ AC 
(b) A(B +C) and verify that A(B +C) 

(c) x + y 
(d) 3x + 4y + z 

AB+AC 

2. Plot the following curves for the specified ranges: 

(a) y = sin 3t for t = 0 : 10 

(b)y = cos2t fort= 0:10 

(c) y = 3sint+4cost fort = -5:15 

( d )y = e-3t for t = -1 : 5 

B.12 LABWORK III 
1. Consider the mechanical system shown below. 

~I 
~I ~I 

f(t) r----. 
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The forces exerted by the springs are zero when X1 = x2 = X3 = 0. 
The input force is j(t) and the absolute displacements of m1, m2 and 
m3 are x 1 , x2 and X3, respectively. The output is the spring force 
in k2 . The differential equations which represent the system can be 
expressed in the state-variable form (A, B, C, D). This can be done 
by choosing the vector of state variables as 

X = [ X1 V1 X2 V2 X3 V3] T . 

The state-variable matrix form is then given by 

0 1 0 0 0 0 

±1 (kl + k2) bl k2 
0 

kl bl 

vl m1 m1 m1 m1 m1 
0 0 0 1 0 0 ±2 k2 k2 b2 b2 

v2 0 0 
±3 m2 m2 m2 m2 

0 0 0 0 0 1 
v3 kl bl b2 kl (bl + b2) 

0 ---
m3 m3 m3 m3 m3 

0 
1 

m1 
0 f(t) 
0 
0 
0 

+ [0] j(t) 

For the following data 

m1 = 0.5kg 
m2 = 0.75kg 
m3 = 2.0kg 

b1 = 1000N sjm 
b2 = 5Nsjm 
k1 = 50Njm 
k2 = 100Njm 

X! 

V! 

X2 
v2 
X3 
V3 

+ 
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(a) Find the output response y(t) to an input force of 50N. 

(b) Find the response to an impulse force input. 

(c) Choose values of b1 and b2 that will reduce oscillations, give a 
practical settling time, and produce smooth responses. 

(d) Explain why the steady state values of the MATLAB plots are 
in agreement with what is expected from analyzing the mechanical 
system. 

(e) Is the matrix A invertible, and why is this the case? 

(suggestion: For the responses, specify the time for which the plot is 
to be graphed, e.g., from Osee to 3sec) 

2. If the output was the platform displacement is x3 then the matrices 
C and D are obtained as follows 

y=[000010] +[OJ f(t). 

(a) Find the output response y(t) to an input force of 50N 

(b) Find the response to an impulse force input. 

(c) Explain why these MATLAB plots are in agreement with what is 
expected from analyzing the mechanical system. 

3. For the translational mechanical system under consideration, the vec-
tor of independent variables (minimum number of state variables) can 
be chosen as 

where 

XR 1 = (xl - X3) 
XR2 = (xl - X2) 
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The state-variable matrix form is then given by, 

XR, 

ill 
XR2 
il2 
i13 

0 1 0 0 
kl bl k2 

0 
m1 m1 m1 
0 1 0 -1 

0 0 
k2 b2 
m2 m2 

kl bl 
0 

b2 
m3 m3 m3 

0 
1 

m1 f(t) 0 
0 
0 

y~ (OOk,OO) :~:~ +[O]f(t). 
V2 
V3 

-1 
bl 

m1 
0 
b2 -
m2 

(bl + b2) 
m3 
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XR, I V1 
XR2 + 
V2 
V3 

(a) Show that this representation produce the same results as the six 
state-variable matrix system by repeating 1(a), (b) and (c) using the 
five state-variable matrix system. 

(b) Is the matrix A invertible, and why is this the case ? 

B.13 LABWORK IV 
1. Consider the 6 x 6 matrix state-space system described in LAB WORK 

Ill. 

The same system can be represented in transfer function form. In 
MATLAB one can convert from state-space to transfer function form 
by using the following command 

[num,den] = ss2tf(A,B,C,D). 

(a) Use the above command to get the pair (num, den) for the above 
system. Plot the step and impulse responses using num, den. 
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The syntax for plotting step and impulse function using transfer 
function is given as 

step(num, den, t) 

impulse(num, den, t). 

Compare these plots with those obtained earlier using the state-
space matrices (A, B, C, D) and explain why the responses are 
in agreement with what is expected. 

(b) Similar to the ss2tf function MATLAB also has tf2ss function 
which converts the transfer function to the state-space form. The 
syntax for this function is given by 

[Al, Bl, Cl, Dl] = tf2ss(num, den). 

Using this function to transform the num, den obtained in part 
(a), to state-space matrices (Al, Bl, Cl, Dl). Compare these 
matrices (Al, Bl, Cl, Dl) with the state-space matrices above 
(A, B, C, D) and comment on the results so obtained. Is the 
matrix Al invertible? 

2. Repeat the same problem 1 for the following 5 x 5 matrix state-space 
system described in LAB III 

Compare the denominator of the transfer function obtained for ma-
trices above with the denominator obtained for the above problem 
(problem 1). 

3. Apart from the step and impulse inputs we can have may other kinds 
of inputs e.g., sinusoidal, triangular wave etc. To obtain the response 
for such inputs MATLAB has a built in function lsim. The usage for 
lsim is shown below 

where u is the input. 

lsim(num, den, u, t) 
lsim(A, B, C, D, u, t) 

Find the response of the system described in problem 1 (using both 
A, B, C, D and num, den) to the following inputs: 

(a) u = 2t 

(b) u = sin 5t 
What would happen to the response if the frequency in part (b) is 
increased from 5 to 10? 

Use subplot to plot the four curves on one sheet and compare them. 
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4. Repeat the above problem 3 for the system described in problem 2 
(using both A, B, C, D and num, den). 

Data: 

B.14 LABWORK V 

m1 = 0.5kg 
m2 = 0.75kg 
m3 = 2kg 

b1 = IOOON s/m 
b2 = 5Ns/m 
k1 = 50N/m 
k2 = lOON/m 

1. Consider the system described by the following state-space matrices: 

Find the transfer function of the system using the MATLAB function 
ss2tf. 

2. The input-output differential equation of a system with zero initial 
conditions is given below: 

ii + 6i; + 25y = 9u + 3u 

(a) Find the transfer function of the system by using Laplace trans-
forms. 

(b) Using the transfer function (num, den) obtained in part (a) find 
the state-variable matrices (A, B, C and D). (Use MATLAB function 
tf2ss.) 

3. The MATLAB function 

[z,p, k] = ss2zp(A, B, C, D) 

finds the zeros and poles of the system described by (A, B, C and 
D). Find the zeros and poles of the system described in problem 2 
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using the state-space description (A, B, C and D). Also construct 
the transfer function using the zeros and poles, and compare with the 
transfer function obtained in problem 2 (a). 

B.15 LABWORK VI 

1. Translational, rotational and electrical systems can be shown to man-
ifest the same dynamic behavior and hence their models can be used 
interchangeably. Consider the four second order systems shown in 
following diagrams: 

~I 

m f(t) 

FIGURE B.l 
A Translational Mechanical System 

) T (t) 

FIGURE B.2 
A Rotational Mechanical System 

Using free-body diagrams and circuit laws (current and voltage) it 
can be shown that the input-output differential equations for the four 
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FIGURE B.3 
An RLC Series Circuit 

FIGURE B.4 

1· 1 

An RLC Parallel Circuit 

systems are given by: 
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+ 

.. bl . kl 1 !( ) x+-x+ -x=- t 
m m m 

2. By comparing these models with the standard second order model 

find the expressions for the respective natural frequency (wn) and 
damping ratio (~) for each of the four systems. 

Use the following data for the four dynamic systems for the rest of 
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the problems: 

b1 = l5Nsjm 
b2 = l5Nms 
k1 = lOONjm 
k2 = lOONm 
m = lkg 
J = lkgm2 

R1 = 1.5D 
2 

R2 = 3n 
c1 = c2 = o.lF 
L1 = L2 = O.lH 

Appendix B: MATLAB 

3. (a) Find the differential equation for each of the four systems (hand 
calculations). 

(b) Find the transfer function for each of the four systems (hand 
calculations). 

(c) Compare the four characteristic equations. 

(d) Compare the four transfer functions. 

4. Use MATLAB to obtain the following: 

(a) the state-variable matrix models (A, B, C and D) for each of 
the four systems. 

(b) the unit step response for each of the four systems. 

(c) the impulse response for each of the four systems. 

5. (a) Compare the system responses (behavior) of the two mechanical 
systems. 

(b) Compare the system responses (behavior) of the two electrical 
systems. 

6. Use the FVT and IVT to confirm the eight MATLAB plots. 

7. Find the DC gain for each of the four systems. 
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